| 研究生: |
王郁萱 Wang, Yu-hsuan |
|---|---|
| 論文名稱: |
高溫廚餘厭氧氫醱酵程序控制與水解機制之研究 Process Study and Hydrolysis Mechanism Study of Thermophilic Hydrogen Production with Starch-riched Kitchen Waste Fermentation |
| 指導教授: |
鄭幸雄
Cheng, Sheng-shung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 基因選殖 、尾端修飾限制片段長度多形性 、厭氧氫醱酵 、澱粉類廚餘 、澱粉水解酶活性測試 |
| 外文關鍵詞: | Amylase activity assay, T-RFLP, Starch-riched kitchen waste, Clone library, Anaerobic hydrogen fermention |
| 相關次數: | 點閱:74 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
廚餘是一種高濃度的有機廢棄物,其總 COD 約 280-430 g/L,VSS/SS 為 95% 以上,具有高濃度的固體物(約 210 g/L),且固體物COD電子分佈佔33.3%。本研究針對台南市的高澱粉濃度廚餘分別進行 20 次的採樣與特性分析,並估算廚餘的電子分布。固態碳水化合物及溶解態碳水化合物佔廚餘電子分布的最大宗,兩者的和約為總電子數的一半,而總有機氮所佔的比例則相對較小,為 17.3%。揮發酸約為8% 左右,而揮發酸中,又以乳酸的濃度最高,為5 g/L。本研究以一實驗室規模的 3 L 廚餘厭氧氫醱酵槽來進行其高澱粉濃度廚餘水解、酸化、產氫之程序研究,反應槽的形式定義為「間歇性進流完全攪拌反應槽」(Intermittent - Continuous Stirred Tank Reactor, I-CSTR)。在經過連續 250 天的長期操作,於第3-2試程發現有最高的平均體積產氫速率為 2.2 L-H2/L/day,該試程操作在水力停留時間為八天,間歇性進流頻率為24小時一次。最高的產氫 yield 也在第3-2試程,為 2.1 mmole-H2/g-COD;揮發性固體物降解率,在第2試程有最佳表現為47%,此試程操作在水力停留時間四天,間歇性進流頻率為12小時一次。在澱粉水解酶的部分,則是在第1試程有最大活性11 U/mL,而在第3-2試程有最佳固體碳水化合物水解為45%。然而,由時間序列採樣分析實驗,得知各試程中水解酶是足夠將固態碳水化合物完全水解的,且最大理論還原糖生成量為176 g-glucose eq./L/hr;在試程2中可有最大一階懸浮性固體物降解常數,值為0.04 hr-1。由降解米飯的產氫潛能生物活性測試,得知試程2有較佳的比產氫速率為0.15 mmole-H2/g-VSS/hr。由酵素動力模式及水解酶最佳化測試,可得KM值為34 g/L,最大速率(Vmax)為3.6 U/mL,且於溫度為55oC及使用磷酸緩衝溶液在pH 5.5或醋酸緩衝液在pH 4.4有最佳活性。以 I-CSTR 廚餘厭氧氫醱酵槽出流混合液進行 16S rRNA 基因選殖及 DNA 定序實驗,在挑選的 148 個 clones 中發現 27 個 OTUs(operational taxonomic units)。42% 的菌比對最接近為 Thermoanaerobacterium thermosaccharolyticum(相似度為 98%),另有比對到Clostridium sp.(相似度為95%,約佔 24%)以及兩株乳酸菌,分別為Lactobacillus panis (相似度99%, 約佔16%)及Lactobacillus amylovorus(相似度99%, 約佔10%)。其中,Thermoanaerobacterium thermosaccharolytium及Lactobacillus amylovorus被報導為具有分泌澱粉水解酶的能力。在 I-CSTR 廚餘厭氧氫醱酵槽 14 次的尾端修飾限制片段長度多形性(terminal restriction fragment length polymorphism, T-RFLP)圖譜分析中,發現反應槽內的微生物在不同操作條件下,其微生物菌相的組成皆已主要的4 OTUs為主,其中TKW-HPB-2(Thermoanaerobacterium thermosaccharolytium)在三試程皆佔有30%以上,而TKW-HPB-1(Clostridium sp.)則會在試程穩定後呈為優勢菌。
Kitchen waste was a kind of waste that contains highly nutritive organic compounds (total COD was about 280-430 g/L and VSS/SS ratio was higher than 95%). The total solid fraction was about 200 g/L and occupied 33% of total COD. The electron distribution of Tainan City kitchen waste was calculated according to the analyses data (n=20). Solid and soluble carbohydrate were the most dominant items of all which occupied about 50% of electron while total protein only about 17.3%. Electron distribution of VFAs (volatile fatty acids) was about 8% which were mainly contributed by 5 g/L of lactic acid. A 3 L bench scale of bio-hydrogenation I-CSTR (Intermittent - Continuous Stirred Tank Reactor) was established for kitchen waste treatment and bio-energy recovering process by anaerobic operation. Within 250 days of continuously long-term operation, the maximum averaged hydrogen production rate of 2.2 L H2/L-day was observed in run 3-2 with 8-day hydraulic retention time (HRT) and 24-hour intermittent feeding period. The highest average hydrogen yield of 2.1 mmol-H2/g-COD was also observed in run 3-2. However, the best VSS removal of 47% was occurred in run 2 which was operated at 4-day HRT and 12-hour intermittent feeding period. According to the analyses of amylase and reducing sugar, the maximum average amylase activity was about 11 U/mL in run 1, but the maximum solid carbohydrate hydrolysis rate was about 45% in run 3. To clarify the starch hydrolysis mechanism, amylase activity of effluent and time series profile between each operated period were monitored, and the white rice batch test was also studied. According to the results of time series profile analyses, amylase activity was sufficient for starch hydrolysis and the maximum theoretical reducing sugar production of 176 g-glucose eq./L was calculated. According to the results, the maximum first order constant of VSS degradation of 0.04 hr-1 was occurred in run 2. At the white rice batch test, the hydrogen producing bacteria taken from run 2 achieved better hydrogen production rate of 264 mL-H2/hr than the other ones. According to the enzyme kinetic study, the KM was 17 g/L and the maximum amylase activity was 1.5 U/mL. The environmental factors effects of amylase in the supernatant were also studied. The best reacted temperature was found to be 55oC. With phosphate buffer, the best amylase activity achieved when pH was at 5.5; with acetate buffer, the best one was observed at pH = 4.4. As the results of 16S rDNA-based cloning screening of the anaerobic microbes taken from I-CSTR bio-hydrogen reactor, the 27 operational taxonomic units (OTUs) were found in 148 clones. Among these clones, 42% of clones could be identified as Thermoanaerobacterium thermosaccharolyticum (98% similarity) and 24% of clones were identified as Clostridium sp. (95% similarity). The other two dominant clones were identified as Lactobacillus panis (99% similarity, abundance of 16%) and Lactobacillus amylovorus (99% similarity, abundance of 10%). Four dominant OTUs were observed during different runs by 14 times of T-RFLP analyses. Thermoanaerobacterium thermosaccharolyticum always exists in the system and amounted to 30%. However, Clostridium sp. would become dominant when the system was steady operated.
Adams MWW, Mortenson LE and Chen JS, Hydrogenase. Biochim Biophys Acta 594:105-176 (1980).
Ahn Y, Park EJ, Oh YK, Park S, Webster G and Weightman AJ, Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production. FEMS Microbiol Lett 249:31-38 (2005).
Akao S, Tsuno H, Horie T and Mori S, Effects of pH and temperature on products and bacterial community in L-lactate batch fermentation of garbage under unsterile condition. Water Res 41:2636-2642 (2007).
Allison C and MacFarlane GT, Regulation of protease production in Clostridium sporogenes. App. Environ Microbio. 56:3485-3490 (1990).
Amann R, LudwigW and Schleifer KH, Phylogentic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169 (1995).
Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R and Stahl DA, Combination of 16S rRNA-targeted oilgonucleotide probes with flow cytometry for analyzing mixed microbial population, Appl Environ Microbiol 56:1919-1925 (1990).
APHA, AWWA, and WEF, Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association (APHA), Washington, DC (2005).
Bahl H, Gottwald M, Kuhn A, Rale V, Andersch W and Gottschalk G, Nutritional Factors Affecting the ratio of solvents produced by Clostridium acetobutylicum. Appl Environ Microbiol 52:169-172 (1986).
Bai MD, Cheng SS and Chao YC, Effects of substrate components on hydrogen fermentation of multiple substrates. Water Sci Technol 50:209-216 (2004).
Baronofsky JJ, Schreurs WJA and Kashket EV, Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermaceticum. Appl Environ Microbiol 48:1134-1139 (1984).
Bertoldo C and Antranikian G, Starch-Hydrolyzing Enzymes from Thermophilic Aechaea and Bateria. Biocatal Biotransformation 6:151-160 (2002).
Bockris JO’M, The origin of ideas on a Hydrogen Economy and its solution to decay of the environment. Int J Hydrogen Energy 27:731-740 (2002).
Bomarius AS and Riebel RR, Biocatalysis, Fundamentals and applications. Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim (2004).
Brosseau JD and Zajic JE, Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. J. Chem. Tech. Biotechnol. 32:496-502 (1982).
Cachat E and Priest FG, Lactobacillus suntoryeus sp. nov., isolated from malt whisky distilleries. Int J Syst Evol Microbiol 55:31-34 (2005).
Camu N, Winter TD, Verbrugghe K, Cleenwerck I, Vandamme P, Takrama JS, Vancanneyt M and Vuyst1 LD, Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl Environ Microbiol 73:1809-1824 (2007).
Cann IKO, Stroot PG, Mackie KR, White BA and Mackie RI, Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp nov and Thermoanaerobacterium zeae sp nov., and emendation of the genus Thermoanaerobacterium. Int J Syst Evol Microbiol 51: 293–302 (2001).
Ceska M, Hultman E and Ingelman BGA, A new method for determination of -amylase. Experentia 25:555-556 (1969).
Chary SJ and Reddy SM, Starch degrading enzymes of two species of Fusarium. Folia Microbiologica 30:452 (1985).
Chefetz B, Stimler K, Shechter M and Drori Y, Interactions of sodium azide with triazine herbicides: effect on sorption to soils. Chemosphere 65:32-357 (2006).
Chen JS and Mortenson LE, Purification and properties of hydrogenase from Clostridium pasteuriamun W5. Biochim Biophys Acta 371:283-298 (1974).
Cheng SS, Chan SM and Chen ST, Effects of volatile fatty acid on thermophilic anaerobic hydrogen fermentation process degrading peptone. Water Sci Technol 46:209-214 (2002).
Coleman G and Grant MA, Characteristics of α-Amylase Formation by Bacillus subtilis. Nature 211: 306-307 (1966).
Collet C, Adler N, Schwitzgu1ebel JP and Peringer P, Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int J Hydrogen Energy 29:1479-1485 (2004).
Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H and Farrow JAE, The phylogeny of the genus Clostridium: proposal of five new genera and eleven species combinations. Int. J. Syst. Bacteriol. 44: 812–826 (1994).
Conrad R and Wetter B, Infuence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch Microbiol 155:94-98 (1990).
Dabrock B, Bahl H and Gottschalk G, Parameters affecting solvent production by Clostridium pasteuriamun. Appl Environ Microbiol 58:1233-1239 (1992).
Das D and Veziroğlu TN, Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13-28 (2001).
Desvaux M, Guedon E and Petitdemange H, Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl Environ Microbiol 66:2461-2470 (2000).
Dhawale MR, Wilson JJ, Khachatourians GG and Ingledew WM, Improved method for detection of starch hydrolysis. Appl Environ Microbiol. 44:747-750 (1982).
Duangmanee, T., Padmasiri SI, Simmons JJ, Raskin L and Sung S, Hydrogen Production by Anaerobic Microbial Communities Exposed to Repeated Heat Treatments. Water Environ Res 79: 975-983 (2007).
Dunn S, Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy 27:235-264 (2002).
Edna MM and Senti FR, Seperaiton of Amylose from Amylopectin of Starch by an Extraction-sedimentation Procedure. J Polym Sci 28: 1-9 (1958).
EPA Taipei, Offical website of Taipei EPA (Environmental Protection Administration), http://www.epb.taipei.gov.tw/ [accessed 20 May, 2007].
EPA Taiwan, Offical website of Taiwan EPA (Environmental Protection Administration), http://www.epa.gov.tw/main/index.asp [accessed 20 May, 2007].
Fan Y, Li C, Lay JJ, Hou H and Zhang G, Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresour Technol 91:189-193 (2004).
Fang HHP and Liu H, Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82:87-93 (2002).
Fang HHP, Li CL and Zhang T, Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy 31:683-692 (2006).
Fang HHP, Liu H and Zhang T, Bio-hydrogen production from wastewater. Water Sci Technol 4:78-85 (2004).
Fazel-Madjlessi J and Bailey JE, Analysis of fermentation processes using flow microfluorometry : amylase and protease activities in Bacillis subtilis batch cultures. Biotechnol Bioeng 22:1657-1669 (1980).
Ferris MJ, Muyzer G and Ward DM, Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340-346 (1996).
Fogarty WM, Kelly CT, Economic microbiology volumn 5, in: Microbial enzymes and bioconversions, ed by Rose AH, Academic Press, Inc. London, pp 115-170 (1980).
G´omez X, Mor´an A, Cuetos MJ and S´anchez ME, The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: A two-phase process. J Power Sources 157:727-732 (2006).
Ginkel SV and Logan B, Inhibition of biohydrogen production by undissociated acetic and butyric acids. Wat Sci Tech 39:9351-9356 (2005).
Ginkel SV, Sung SW and Lay JJ, Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35:4726–4730 (2001).
Groot D, Methane and hydrogen: on the role of end-use technologies in shaping the infrastructure, in Bio-methane& Bio-hydrogen, ed by Reith JH, Wijffels RH and Barten H, Dutch Biological Hydrogen Foundation publishers, pp 29-56 (2003).
Gupta R, Gigras P, Mohapatra H, Goswami VK and Chauhan B, Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599-1616 (2003).
Hawkes FR, Dinsdale R, Hawkes DL and Hussy I, Sustainable fermentative hydrogen production: change for process optimization. Int J Hydrogen Energy 27:1339-1347 (2002).
Henfner III RA, The age of energy gases, 10th Repsol-Harvard Seminar on Energy Policy, Madrid, Spain (1999).
Herbert D, Philipps PJ and Strange RE, Carbohydrate analysis. Methods Enzymol 5:265-277 (1971).
Hollo J and Szeitli J, The reaction of starch with iodine, in Starch and its derivatives 4th edn, ed by Rodley JA, Chapman & Hall, pp 203-246 (1968).
Horiuchi J, Shimizu T, Kanno T and Kobayashi M, Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemstat culture. Biotechnol Bioeng 13:155-157 (1999).
ICC, Standard Methods of the International Association of Cereal Chemistry. Method 107. Verlag Moritz Schäfer published, Detmold, Germany, (1968)
Ishikawa K., Nakatani H., Katsuya Y. and Fukazawa C, Kinetic and Structural Analysis of Enzyme Sliding on Substrate: Multiple Attack in β-Amylase. Biochem J 46:792-798 (2007).
Junelles AM, Janati-Idrissi R, Petitdemange H and Gay R, Iron effect on acetone butanol fermentation. Curr Microbiol 17:299-303 (1988).
Jungermann K, Thauer RK, Leimenstoll G and Decker K, Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic clostrida. Biochim Biophys Acta 305:268-280 (1973).
Kadar Z, De VT, van Noorden GE, Budde MAW, Szengyel Z and Reczey K, Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol 113:497–508 (2004).
Karube I, Matsunaga T, Tsuru s and Suzuki S, Continuous hydrogen production by immobilized whole cells of Clostridium butyricum. Biochim Biophys Acta 444:338 (1976).
Kataoka N, Miya A and Kiriyama K, Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Water Sci Technol 36:41-47 (1997).
Katkocin DM, Word NS and Yang SS, Novel thermostable, aciduric alpha-amylase and method for its production. US patent 4578352 (1986).
Kawaguchi H, Hashimoto K, Hirata K and Miyamoto K, H2 Production from Algal Biomass by a Mixed Culture of Rhodobium marinum A-501 and Lactobacillus amylovorus. J Biosci Bioeng 91:277-282 (2001).
Kim TU, Gu BG, Jeong JY, Byun SM and Shin YC, Purification and characterization of a maltotetraose forming alkaline -amylase from an alkalophilic Bacillus sp. GM8901. Appl Environ Microbiol 61:3105-3112 (1995).
Kotay SM and Das D, Biohydrogen as a renewable energy resource—Prospects and potentials. Int J Hydrogen Energy 33:258-263 (2008).
Kumar N and Das D, Production and purification of alpha-amylase from hydrogen-producing Enterobacter cloacae IIT-BT 08. Bioprocess Biosyst Eng 23:205-208 (2000).
Lay JJ, Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74:280-287 (2001).
Lay JJ, Lee YJ, and Noike T, Feasibility of biological hydrogen production from organic fraction of municipal solid waste, Water Res 11:2579-2586 (1999).
Lay JJ, Modeling and optimization of anaerobic digested sludge converting stach to hydrogen. Biotechnol Bioeng 68:269-278 (2000).
Lee DH and Lee DJ, Hydrogen economy in Taiwan and biohydrogen. Int J Hydrogen Energy 33:1607-1618 (2008).
Lee YE, Jain MK, Lee CY, Lowe SE and Zeikus JG, Taxonomic distinction of saccharolytic thermophilic anaerobes— description of Thermoanaerobacterium xylanolyticum gen nov, sp nov, and Thermoanaerobacterium saccharolyticum gen nov, sp. nov.— reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium-Thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb nov, Thermoanaerobacterium thermo-sulfurigenes comb nov, and Thermoanaerobacter thermohydrosulfuricus comb nov, respectively and transfer of Clostridium thermohydrosulfuricum 39e to Thermoanaerobacter ethanolicus. Int. J. Syst. Bacteriol 43: 41–51 (1993).
Lee YJ, Miyahara T and Noike T, Effect of iron concentration on hydrogen fermentation. Bioresour Technol 80: 227-231 (2001).
Li C and Fang HHP, Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Tech 37:1-39 (2007).
Li SL, Kuo SC, Lin JS, Lee ZK, Wang YH and Cheng SS, Process performance evaluation of intermittent–continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste. Int J Hydrogen Energy 33:1522-1531 (2008)
Li YH, Engle M, Weiss N, Mandelco L, Wiegel J, Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile. Int J Syst Bacteriol 44:111–118 (1994).
Lin CY and Chang RC, Fermentative hydrogen production at ambient temperature. Int J Hydrogen Energy 29:715-720 (2004).
Lin CY and Chang RC, Hydrogen production during the anaerobic acidogenic conversion of glucose. J Chem Technol Biotechnol 74:498-500 (1999).
Lin CY and Lay CH, Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 29:275-281 (2004).
Liu DW, Liu D, J. Zeng R and Angelidaki I, Hydrogen and methane production household solid waste in the two-stage fermentation process. Water Res 40: 2230-2236 (2006).
Liu DW, Zeng RJ and Angelidaki I, Enrichment and adaptation of extreme-thermophilic (70oC) H2 producing bacteria to organic household solid waste by repeated batch cultivations, 11th IWA World Congress on Anaerobic Digestion, Bribane Australia, 23-27 Spetember (2007).
Liu SY, Rainey FA, Morgan HW, Mayer F and Wiegel J, Thermoanaerobacterium aotearoense sp nov, a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. Int J Syst Bacteriol 46: 388–396 (1996).
Liu WT, Marsh TL, Cheng H and Forney LJ, Characteristion of microbial diversity by determining terminal restriction fragement length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516-4522 (1997).
Lovitt RW, Shen GJ and Zeikus JG, Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 170:2809-2815 (1988).
Lovitt RW, Shen GJ and Zeikus JG, Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 170:2809–15 (1988).
Lowe DP, Arendt1EK, Soriano AM and Ulmer HM, The influence of lactic acid bacteria on the quality of malt. J Inst Brew 111:42-50 (2005).
Mathewson PR and Pomeranz Y, Detection of sprouted wheat by a rapid colorimetric determination of -amylase. J Assoc Off Anal Chem 60: 16-20 (1977).
McCarty PL, Anaerobic Waste Treatment Fundamentals III, Public Works 95, New York, pp 91-94 (1964).
Messens W, Neysens P, Vansieleghem W, Vanderhoeven J and Vuyst LD, Modeling Growth and Bacteriocin Production by Lactobacillus amylovorus DCE 471 in Response to Temperature and pH Values Used for Sourdough Fermentations. Appl Environ Microbiol 68:1431-1435 (2002).
Miller DN, Bryant JE, Madsen EL and Ghiorse WC, Evaluation and optimatization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715-5724 (1999).
Miller GL, Use of DinitrosaIicyIic acid reagent for determination of reducing sugar. Anal Chem 31:426-428 (1959).
Miyake J, The science of biohydrogen: an energetic view, in Biohydrogen, ed by Zaborsky OR, Benneman JR, Matsunaga T, Miyake J and san Pietro A, Plenum Press, New York, pp 7-18 (1998).
Mondal K, Sharma A, and Gupta MN, Macroaffinity ligand-facilitated three-phase partitioning for purification of glucoamylase and pullulanase using alginate. Protein Expr Purif 28:190-195 (2003).
Muller MRA, Wolfrum G, Stolz P, Ehrmann MA and Vogel RF, Monitoring the growth of Lactobacillus species during a rye flour fermentation. Food Microbiol 18:217-227 (2001).
Nelson DL and Cox MM, Lehninger Principles of Biochemistry, 4th edition, W.H. Freeman and Company, New York, pp 202-207 (2004).
Niel EWJV, Budde MAW, de Haas GG, van de WFJ, Claassen PAM and Stams AJM, Distinctive properties of high hydrogen producing extreme thermopiles, Cadicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrogen Energy 27:1391–1398 (2002).
Nochur SV, Demain AL and Roberts MF. Carbohydrate utilization by Clostridium thermocellum: importance of internal pH in regulating growth. Enzyme Microb Technol 14:338-349 (1992).
Oh YK, Kim SH, Kim MS and Park S, Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol Bioeng 88: 690-698 (2004).
Okamoto M, Miyahara T, Mizuno O and Noike T, Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41:25-32 (2000).
Omemu AM, Akpan I, Bankole MO and Teniola OD, Hydrolysis of raw tuber starches by amylase of Aspergillus niger AM07 isolated from the soil. Afr J Biotechnol 4:19-25 (2005).
Onodera H, Miyahara T and Nokie T, Influent of ammonia concentration on hydrogen transformation of sucrose. Proc. of 7th IWQA Asia-Pacific Regional Conference 1139-1144 (1999).
O-Thong S, Prasertsan P, Intrasungkha N, Dhamwichukorn S and Birkeland N, Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor. Enzyme Microb Technol 41:583-590 (2007).
O-Thong S, Prasertsan P, Karakashev D and Angelidaki I, Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int J Hydrogen Energy 33:1204-1214 (2008)
Oude Elferink SJ, Krooneman J, Gottschal JC, Spoelstra SF, Faber F and Driehuis F, Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67:125-132 (2001).
Owen WF, Stuckey DC, Herly JRJB, Young LY and McCarty PL, Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485-492 (1979).
Peguin S and Soucaille P, Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Appl Environ Microbiol 61:403–405 (1995).
Perten H, A modified falling number method suitable for measuring both cereal and fungal -amylase activity. Cereal Chem 61:108-111 (1984).
Reith JH, Wijffels RH and Barten H, Introduction: the perspectives of biological methane and hydrogen production, in Bio-Methane and Bio-Hydrogen, ed by Reith JH, Wijffels RH and Barten H, Dutch Biological Hydrogen Foundation publisher, Hague, pp 9-13 (2003).
Ren N, Wang B and Ma F, Hydrogen bio-production of carbohydrate fermentation by anaerobic sludge process, Proc.of 68th Annual Water environmental Federal Conference, Miami (1995).
Rittmann BE and McCarty PL, Environmental Biotechnology: Principle and Applications, International Edition, McGraw-Hill, New York, pp 126-161, 569-627 (2001).
Rodriguez-Sanoja R, Oviedo N, Esclante L and Sanchez S, Site-directed mutagenesis of the conserved aromatic residues in the 5 tandem modules starch binding domain of Lactobacillus amylovorus alpha-amylase. J Biotechnol 131:S104-S105 (2007).
Roos S, Karner F, Axelsson L and Jonsson H, Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int J Syst Evol Microbiol 50:21-258 (2000).
Roychoudhruy S, Parulekar SJ and Weigand WA, Cell Growth and α-Amylase Production Characteristic. Biotechnol Bioeng 33:197-206 (1989).
Schink B and Zeikus JG, Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate. J Gen Microbiol 129:1149–58 (1983).
Schoenheit P, Brandis A and Thauer RK, Ferredoxin degradation in growing Clostridium pasteurianum during periods of iron deprivation. Arch Microbiol 120:73–76 (1979).
Schwartz RD and Keller FA, Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentations at acidic pH. Appl Environ Microbio 43:1385-1392 (1982).
Schwermann B, Pfau K, Liliensiek B, Schleyer M, Fischer T and Bakker EP, Purification, properties and structural aspects of a thermoacidophilic -amylase from Alicyclobacillus acidocaldarius ATCC 27009 Insight into acidostability of proteins. Eur J Biochem 226:981-991 (1994).
Sheehan H and McCleary BV, A new procedure for the measurement of fungal and bacterial -amylase. Biotechnol Tech 2: 289-292 (1988).
Shewale SD and Pandit AB, Hydrolysis of soluble starch using Bacillus licheniformis -amylase immobilized on superporous CELBEADS, Carbohydr Res 342: 997-1008 (2007).
Skerman VBD, McGowan V and Sneath PHA, Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420, (1980).
Sridhar J, Eiteman MA, Wiegel JW, Elucidation of enzymes in fermentation pathways used by Clostridium thermosuccinogenes growing on inulin. Appl Environ Microbiol 66:246–251 (2000).
Stolz P, Böcker G, Vogel RF and Hammes WP, Utilisation of maltose and glucose by lactobacilli isolated from sourdough. FEMS Microbiol Lett 109:237-242 (1993).
Taguchi F, Chang JD, Mizukami N, Satio-Taki T, Hasegawa K and Morimoto M, Isolation of a hydrogen production bacteria, Clostridium beijerinckii strain AM21B from termites. Can J Microbiol 39:726-730 (1993).
Taguchi F, Mizukami N, Haseguwa K, Saito-taki T and Morimoto M, Effect of amylase accumulation on hydrogen production by Clostridium beijerinckii, strain AM21B. J of fermen and bioengineering 77: 565-567 (1994).
Taguchi F, Mizukami N, Saito-Takio T and Hasrgawa K, Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No 2. Can J Microbiol 41:536-540 (1995).
Tanisho S, Wakao N and Kosako Y, Biological hydrogen production by Enterobacter aerogenes. Int J Hydrogen Energy 16:529-530 (1983).
Terracciano JS, Schreurs WJA and Kashket ER, Membrance H+ conductance of Clostridium thermoaceticum and Clostridium thermoaceticum. Appl Environ Microbiol 53:782-786 (1987).
The Amylase Research Society of Japan, Their sources, isolation methods, properties and applications, in handbook of amylases and related enzymes, ed by Oxford, pergamon Press, New York, pp 116-124 (1988).
Ueno Y, Haruta S, Ishii M and Igarashi Y, Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol 57:555-562 (2001).
Valdez-Vazquez I, Rios-Leal E, Esparza Garcia F and Poggi-Varado HM, Semi-continuous solid substrate anaerobic reactor for H2 production from organic waste: Mesophilic versus thermophilic regime. Int J Hydrogen Energy 30:1383-1391 (2005).
Vallee BL, Stein AS, Sumerwell WN and Fischer EH, Metal content of a-amylase of various origins. J Biol Chem 234: 2901-2095 (1959).
Vancanneyt M, de Vos P, Vennens L and de Ley J, Lactate and ethanol dehydrogenase activities in continuous cultures of Clostridium thermosaccharolyticum LMG 6564. J Gen Microbiol 136:1945–1951 (1990).
Vancanneyt M, Engelbeen K, Wachter MD, Vandemeulebroecke K, Cleenwerck I and Swings J, Reclassification of Lactobacillus ferintoshensis as a later heterotypic synonym of Lactobacillus parabuchneri. Int J Syst Evol Microbiol 55:2195-2198 (2005).
Vihinen M and Mantsala P, Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol. 24:329-418 (1989).
Vuyst LD, Schrijvers V, Paramithiotis S, Hoste B, Vancanneyt M, Swings J, Kalantzopoulos G, Tsakalidou E and Messens W, The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. Appl Environ Microbiol 68:6059-6069 (2002).
Wang G and Wang DIC, Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl Environ Microbiol 47:294-298 (1984).
Wiegel J, Kuk SU, Kohring GW, Clostridium thermobutyricum sp. nov., a moderate thermophile isolated from a cellulolytic culture, that produces butyrate as the major product. Int J Syst Bacteriol 39:199–204 (1989).
Wiese B, Strohmar W, Rainey FA and Diekmann H, Lactobacillus panis sp. nov., from sourdough with a long fermentation period. Int J Syst Bacteriol 46:449-453 (1996).
Wong DWS, Batt SB and Robertson GH, Microassay for rapid screening of -Amylase activity. J Agric Food Chem 48: 4540-4543 (2000).
Yang Y and Tao WY, Effects of lactic acid fermentation on FT-IR and pasting properties of rice flour. Food Res Intern, published online (2007).
Yokoi H, Ohkawa T, Hirosse J, Hayashi S and Takasaki Y, Characteristics of hydrogen production by acid uric Enterobacter aerogen strain HO-39. J Ferment Bioeng 80:571-574 (1995).
Yu HQ, Zhu ZH, Hu WR and Zhang HS, Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic culture. Int J Hydrogen Energy 27:1395-1365 (2002).
Zhang T, Liu H, Fang HHP, Biological hydrogen production from starch in wastewater under thermophilic condition. J Environ Manage 69:149-156 (2003).
Zwietering MH, Jongenburger I, Rombouts FM and Van’t Riet K, Modeling of bacteria growth curve. Appl Environ Microbiol 56:1875-1881 (1990).
白明德、鄭幸雄、趙禹杰、簡杏純、林燕輝、林畢修平。厭氧生物氫發酵程序應用於處理廢棄活性污泥的生物產氫與有機物降解特性研究, 第二十七屆廢水處理技術研討會論文集 (2002)。
李學霖,單醣與聚醣類混合蛋白腖基質於厭氧產氫程序分解機制之比較研究。成功大學環境工程學系碩士論文(2005)。
林建勝,以生質能源程序探討廚餘厭氧清醱酵之研究。成功大學環境工程學系碩士論文(2007)。
黃仁唏,廚餘回收再利用(二),行政院環保署中部辦公室,台中(2001)。
趙禹杰,澱粉及蛋白腖複合機質厭氧醱酵產氫程序之功能評估。成功大學環境工程學系碩士論文(2004)。