簡易檢索 / 詳目顯示

研究生: 黃俊翰
Huang, Jun-Han
論文名稱: 以複合製程成長氧化鋅奈米元件
Fabrication of ZnO Nanodevices by Hybrid Processes
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 137
中文關鍵詞: 氧化鋅氫氣奈米柱傾斜角沉積抗反射奈米發電機
外文關鍵詞: zinc oxide, hydrogen, nano-pillar, oblique-angle deposition, anti-reflection, nanogenerator
相關次數: 點閱:126下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅為一種具有寬能隙(3.3eV)以及大的激子束縛能(exciton binding energy)的半導體,因此在光電領域上具發展潛力,而近年來奈米科技的蓬勃發展,除了許多氧化鋅奈米結構被成長出來外,更引領出許多新的應用,例如抗反射層、奈米發電元件、光感測器、氣體感測器及太陽能電池等等。
    本研究以磁控濺鍍製程為主成長具有高度結晶性、大面積均勻性的氧化鋅薄膜及奈米結構,並對於其成長機制以及應用方面進行研究。文中主要討論氫氣於濺鍍製程中所造成的還原環境對於結構的表面形貌、導電性質以及結構所造成的影響,並發展出成長大面積單晶氧化鋅奈米柱的技術,除此之外,本研究後段更結合了傾斜角製程技術,研究出一種以缺陷引入所造成的結構傾斜機制,差排(dislocation)為主的缺陷於奈米結構的暴露面(exposed side)引入造成結構的連續彎曲,本研究以此為基礎結合了化學溶液方法成長出具有良好排列(well-aligned)的傾斜奈米線陣列,這此結構可以應用於抗反射,良好排列的傾斜奈米線也具有良好的光學異向性,除此之外,傾斜奈米線陣列應用於奈米發電元件時,也因為結構的傾斜使得輸出的電壓對於施力方向具有異向性。

    ZnO is a promising material with potential applications in electric and optoelectronic devices, due to direct wide bandgap (Eg=3.3eV) semiconducting properties and large exciton binding energy(60meV). Because of fast development of nanotechnology in recent years, various ZnO nanostructures have been successfully grown by different methods, leading to many kinds of applications, such as anti-reflection coating, nano-generator, light sensor, gas sensor and solar cell, etc.
    In this study, ZnO thin film and nanostructures were deposited by magnetron sputtering with high crystallinity and large-area uniformity, its growth mechanism and characteristics were also discussed. Introduction of hydrogen during high temperature sputtering was found to affect the morphological, electrical and structural properties, based on its results, large-area single-crystalline ZnO nanorods were successfully grown. Besides, a new nanostructure bending mechanism was also well developed by combining high-temperature reductive sputtering and oblique-angle deposition technology, which is mainly based on introduction of defects on exposed side of nanostructure during growth, leading to continuous columns bending. Oblique ZnO nanowires array were grown on bent columns by subsequent hydrothermal process, excellent anti-reflection property was measured based on this novel structure, well aligned oblique nanowires also show anisotropic optical property. Besides, when oblique nanowire array was adopted in nanogenerator, the output voltage changed with scanning force due to its oblique structure.

    中文摘要 --------- I 英文摘要 ---------III 致謝 -------------IV 總目錄 ----------V 圖目錄 ---------VII 表目錄 ---------IX 第一章 前言 1 1-1簡介 1 1-2 研究動機 2 第二章 理論基礎與文獻回顧 3 2-1氧化鋅材料簡介 3 2-2氧化鋅製程技術 7 2-3氧化鋅原件之應用 11 2-4氫氣於氧化鋅之作用 12 2-5濺鍍原理與薄膜結構 19 2-6傾斜角沉積簡介 35 2-6-1傾斜角沉積原理 35 2-6-1傾斜角沉積結構的應用 47 第三章 實驗方法 53 3-1實驗流程 53 3-2實驗材料與藥品 55 3-3實驗設備 57 3-3-1濺鍍系統 57 3-3-2傾斜角濺鍍系統 59 3-4實驗細節 61 3-4-1試片清洗 61 3-4-2濺鍍參數設定 61 3-4-3水熱法(化學浴法)成長氧化鋅奈米線 67 3-5實驗分析 69 第四章 結果與討論 70 4-1氫氣對於氧化鋅高溫濺鍍製程的影響 70 4-2高溫還原環境沉積氧化鋅奈米柱結構機制討論 80 4-3高溫還原環境沉積傾斜氧化鋅奈米結構 91 4-4傾斜氧化鋅奈米結構性質討論及其應用 114 第五章 結論 126 參考文獻 128 著作 136

    1. A. Janotti, Chris G. Van de Walle, Rep. Prog. Phys. (2009), 72, 126501
    2. E. Kisi and M. M. Elcombe, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. (1989), C45, 1867
    3. Handbook of Sputter Deposition Technology, Kiyotaka Wasa, Shigeru Hayakawa,1991
    4. A. F. Kohan, G. Ceder, and D. Morgan, Chris G. Van de Walle, Phys. Rev. B (2000), 61, 15019–15027
    5. F. H. Leiter, H. R. Alves, A. Hofstaetter, D. M. Hofmann, and B. K. Meyer, Phys. Stat. Sol. B (2001), 226, R4.
    6. W. E. Carlos, E. R. Glaser and D. C. Look, Physica B (2001), 308-310, 976
    7. F. Tuomisto, V. Ranki, K. Saarinen, D C. Look, Phys. Rev. Lett. (2003), 91, 205502
    8. Chris G. Van de Walle, Phys. Rev. Lett. (2000), 85, 1012-1015
    9. S. B. Orlinskii, J. Schmidt, P. G. Baranov, Phys. Rev. Lett. (2002), 88, 045504
    10. Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, International Journal of Hydrogen Energy (2004), 29, 323-327
    11. D.C. Look, C. Coskun, B. Claflin, G.C. Farlow, Physica B (2003), 340-342, 32-38
    12. T. Nakada, Y. Ohkubo, N. M., A. Kunioka, Jpn. J. Appl. Phys. (1995), 34, 3623-3627
    13. B.E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, C. G. Granqvist, Phys. Rev. B (1998), 37, 10244
    14. J. Han, P. Q. Mantas, A.M.R. Senos, J. Euro. Cer. Soc. (2001), 21, 1883-1886
    15. H. Ko, W.P. Tai, K.C. Kim, S.H. Kim, S.J. Suh, Y.S. Kim, J. Cryst. Grow. (2005), 277, 352–358
    16. S. Takeda, M. Fukawa, Thin Solid Films (2004), 468, 234-239
    17. K. Tominaga, T. Takao, A. Fukushima, T. Moriga, I. Nakabayashi, Vacuum (2002), 66, 505-509
    18. T.Y. Ma, D.K. Shim, Thin Solid Films (2002), 410, 8-13
    19. S.S. Liu, J.G. Lu; Z.Z. Ye, H.P. He, X.Q. Gu, L.X. Chen, J.Y. Huang, B.H. Zhao, Solid State Commun. (2008), 148, 25–28
    20. J. Wu, Y.T. Yang, Mater. Lett. (2008), 62, 1899–1901
    21. M. Joesph, H. Tabata, H. Saeki, K. Ueda, T. Kawai, Physica B (2001), 302-303, 140-148
    22. Y. Yan, S.B. Zhang, S.T. Pantelides, Phys. Rev. Lett. (2001), 86, 5723
    23. T.M. Barnes, K. Olson, C.A. Wolden, Appl. Phys. Lett. (2005), 86, 112112
    24. J.M. Bian, X.M. Li, C.Y. Zhang, W.D. Yu, X.D. Gao, Appl. Phys. Lett. (2004), 85, 4070
    25. Y.W. Heo, Y.W. Kwon, Y. Li, S.J. Pearton, D.P. Norton, Appl. Phys. Lett. (2004), 84, 3474
    26. D.K. Hwang, K.K. Kim, D. C. Look, Y. S. Park, Appl. Sci. Lett. (2005), 86, 151917
    27. Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White, J. Cryst. Grow. (2000), 216, 330-334
    28. J.C. Fan, C.Y. Zhu, S. Fung, Y.C. Zhong, K.S. Wong, Z. Xie, G. Brauer, W. Anwand, W. Skorupa, C.K. To, B. Yang, C.D. Beling, C.C. Ling, J. Appl. Phys. (2009), 106, 073709
    29. L.G. Wang, A. Zunger, Phys. Rev. Lett. (2003), 90, 256401
    30. M. Joseph, H. Tabata, H. Saeki, K. Ueda, T. Kawai, Physica B (2001), 302-303, 140-148
    31. T. Yamamoto, H.K. Yoshida, Physica B (2001), 302-303, 155-162
    32. J.G. Lu, L.P. Zhu, Z.Z. Ye, F. Zhuge, Y.J. Zeng, B.H. Zhao, D.W. Ma, Appl. Surf. Sci. (2005), 245, 109-113
    33. J.G. Lu, Z.Z. Ye, F. Zhuge, Y.J. Zeng, B.H. Zhao, L.P. Zhu, Appl. Phys. Lett. (2004), 85, 3134
    34. S.H. Jeong, S. Kho, D. Jung, S.B. Lee, J.H. Boo, Surf. Coat. Technol. (2003), 174-175, 187-192
    35. S. Nishizawa, T. Tsurumi, H. Hyodo, Y. Ishibashi, N. Ohashi, M. Yamane, O. Fukunaga, Thin Solid Films (1997), 302, 133-139
    36. H.J. Ko, S.-K. Hong, Y. Chen, T. Yao, Thin Solid Films (2002), 409, 153-160
    37. K. Miyamoto, M. Sana, H. Kato, T. Yao, J. Cryst. Grow. (2004), 265, 34
    38. J. Tsujino, N. Homma, T. Sugawara, I. Shimono, Yoshihiko, Thin Solid Films (2002), 407, 86-91
    39. W. Lee, M.C. Jeong, J.M. Myoung, Acta Materialia (2004), 52, 3949–3957
    40. J.N. Zeng, J.K. Low, Z.M. Ren, Thomas Liew, Y.F. Lu, Appl. Surf. Sci. (2002), 197-198, 362-367
    41. N.Takahashi, K. Kaiya, K. Omichi, T. Nakamura, S. Okamoto, H. Yamamoto, J. Cryst. Grow. (2000), 209, 822
    42. K. Haga, M. Kamidaira, Y. Kashiwaba, T. Sekiguchi, H. Watanabe, J. Cryst. Grow. (2000), 214-215, 77
    43. M.C. Jeong, B.Y. Oh, W. Lee, J.M. Myoung, Appl. Phys. Lett. (2005), 86, 103105
    44. M. Purica, E. Budianu , E. Rusu , M. Danila , R. Gavrila, Thin Solid Films (2002), 403 –404, 485–488
    45. G. Ning, X. Zhao, J. Li, Opt. Mater. (2004), 27, 1-5
    46. W. I. Park, Y. H. Jung, Gyu-Chul Yi, Appl. Phys. Lett. (2003), 82, 964
    47. C.H. Hung, W.T. Whang, J. Cryst. Grow. (2004), 268, 242-248
    48. B. P. Zhang, N. T. Binh, K. Watasuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, H. Koinuma, Appl. Phys. Lett. (2004), 84, 4098
    49. Z. Chen, Z. Shan, M.S. Cao, L. Lu, Scott X Mao, Nanotechnol. (2004), 15, 365-369
    50. L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, J. Qi, Appl. Phys. Lett. (2005), 86, 024108-1
    51. Z.L. Wang, and J.H. Song, Science (2006), 312, 242-246
    52. Y.F. Gao, Z.L. Wang, Nano Lett. (2007), 7, 2499-2505
    53. S. Xu, Y. Qin, C. Xu, Y.G. Wei, R.S. Yang, Z. L. Wang, Nat. Nanotechnol. (2010), 5, 366-373
    54. X.D. Wang, Y. Ding, Z. Li, J.H. Song, Z. L. Wang, J. Phys. Chem. C (2009), 113, 1791-1794
    55. S. N. Das, J.P. Kar, J.H. Choi, T. I. Lee, K. J. Moon, J.M. Myoung, J. Phys. Chem. C (2010), 114, 1689-1693
    56. H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater. (2002), 14, 158–160
    57. W.Z. Wang, B.Q. Zeng, J. Yang, B. Poudel, J.Y. Huang, M. J. Naughton, and Z.F. Ren, Adv. Mater. (2006), 18, 3275-3278
    58. C.H. Liu, J.A. Zapien, Y. Yao, X.M. Meng, C.S. Lee, S.S. Fan, Y. Lifshitz, S.T. Lee, Adv. Mater. (2003), 15, 838–841
    59. Mollwo E, Z. Phys. (1954), 138 478
    60. A.R. Hutson, Phys. Rev. (1957), 108, 222
    61. B.Y. Oh, M.C. Jeong, D.S. Kim, W. Lee, J.M. Myoung, J. Cryst. Grow. (2005), 281, 475-480
    62. J.M. Lee, K.K. Kim, S.J. Park, W.K. Choi, Appl. Phy. Lett. (2001), 78, 3842-3844
    63. J.B. You, X.W. Zhang, P.F. Cai, J.J. Dong, Y. Gao, Z.G. Yin, N.F. Chen, R.Z. Wang, H. Yan, Appl. Phys. Lett. (2009), 94, 262105
    64. S.H. Jo, J.Y. Lao, Z.F. Ren, R.A. Farrer, T. Baldacchini, J.T. Fourkas, Appl Phys Lett (2003), 83, 4821-4823
    65. C.G. Van de Walle, Phys. Rev. Lett. 85 (2000) 1012-1015
    66. C.G. Van de Walle, J. Neugebauer, Nature (2003), 423, 626-628
    67. C.G. Van de Walle, J. Neugebauer, Annu. Rev. Mater. Res.(2006), 36,179–198
    68. E.C. Lee, K.J. Chang, Phys. Rev. B (2004), 70, 115210
    69. G.A. Shi, M. Saboktakin, M. Stavola, S.J. Pearton, Appl. Phys. Lett. (2004), 85, 5601
    70. L.Y. Chen, W.H. Chen, J.J. Wang, F.C.N. Hong, Y.K. Su, Appl. Phys. Lett. (2004), 85, 5628-5630
    71. S.B. Orlinskii, J. Schmidt, P.G. Baranov, Phys. Rev. Lett. (2002), 88, 045504
    72. M. Sano, K. Miyamoto,H. Kato, T. Yao, J. Appl. Phys. (2004), 95, 5527
    73. Y.M. Strzhemechny, H.L. Mosbacker, D.C. Look, D.C. Reynolds, C.W. Litton, Nelson et al., S. Niki, L.J. Brillson, Appl. Phys. Lett.(2004), 84, 2545
    74. S.J. Jokela, M.D. McCluskey, KG. Lynn, Physica B (2003), 340-342, 221-224
    75. K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, S.O. Kucheyev, C. Jagadish, J.S. Williams, R.G. Wilson, J.M. Zavada, Appl. Phys. Lett. (2002), 81, 3996-3998
    76. K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, C.E. Stutz, B. Luo, F. Ren, D.C. Look, J.M. Zavada, Appl. Phys. Lett. (2003), 82. 385-387
    77. D.R. Stull, H. Prophet, et al., JANAF Thermochemical Tables, 2nd ed. US. Government Printing Office, Washington, DC, 1971
    78. T. Quadir, D.W. Readey, J. Am. Cer. Soc. (1989), 72, 297-302
    79. S.Y. Myong, K.S. Lim, Appl. Phys. Lett. (2003), 82, 3026-3028
    80. J.J. Wu, H.I Wen, C.H. Tseng, S.H. Liu, Adv. Funct. Mater. (2004), 14, 806-810
    81. S. Yoo, S.A. Akbar, K.H. Sandhage, Adv. Mater. (2004), 16, 260-263
    82. S. Yoo, S.A. Dregia, S.A. Akbar, H. Rick, K.H. Sandhage, J. Mater. Res. (2006), 21, 1822-1829
    83. The Materials Science of Thin Films ( 2nd edition), Milton Ohring, 2001
    84. D.M. Mattox, J. Vac. Sci. Technol. A (1989), 7, 1105
    85. Principles of Plasma Discharges and Materials Processing (2nd edition), Michael A. Lieberman and Allan J. Lichtenberg, 2005
    86. Y. Kajikawa, S. Noda, H. Komiyama, J. Vac. Sci. Technol. A (2003), 21, 1943-1954
    87. S. Nicolay, S. Fay, C. Ballif, Cryst. Grow. Des. (2009), 9, 4957-4962
    88. X.L. Chen, X.H. Geng, J.M. Xue, D.K. Zhang, G.F. Hou, Y. Zhao, J. Cryst. Grow. (2006), 296, 43-50
    89. A. van der Drift, Philips Res. Pep. (1967), 22, 267-288
    90. E.A. Matson, S.A. Polyakov, Physica Status Solidi (a) (1977), 41, K93–K95
    91. Y. Kajikawa, J. Cryst. Grow. (2006), 289, 387-384
    92. Y. Gu, J. Qi, Y. Zhang, Mater. Sci. Forum (2007), 561-565, 1861-1864
    93. M. Matsuoka, K. Ono, Appl. Phys. Lett. (1988), 53, 1393
    94. P. Sharma, K. Sreenivas, K.V. Rao, J. Appl. Phys. (2003), 93, 3963
    95. S.J. Henley, M.N.R. Ashfold, D. Cherns, Thin Solid Films (2002), 422, 69-72
    96. L.C. Nistor, C. Ghica, D. Matei, G. Dinescu, M. Dinescu, G. Van Tendeloo, J. Cryst. Grow. (2005), 277, 26-31
    97. T. Hiramatsu, M. Furuta, H. Furuta, T. Matsuda, C. Li, T. Hirao, J. Cryst. Grow. (2009), 311, 282-285
    98. Y. Cui, G. Du, Y. Zhang, H. Zhu, B. Zhang, J. Cryst. Grow. (2005), 282,389-393
    99. X.L. Chen, X.H. Geng, J.M. Xue, D.K. Zhang, G.F. Hou, Y. Zhao, J. Cryst. Grow. (2006), 296, 43-50
    100. D.N. Lee, Mater. Sci. Forum (2002), 408-412, 75-94
    101. J.I. Hong, J. Bae, Z.L. Wang, R.L. Snyder, Nanotechnol. (2009), 20, 085609
    102. T. Yanagitani, M. Kiuchi, Jap. J. Appl. Phys. (2007), 46, L1167–L1169
    103. B.Y. Oh, W.K. Lee, Y.H. Kim, D.S. Seo, J. Appl. Phys. (2009), 105, 054506
    104. D.O. Smith, J. Appl. Phys. (1959), 30, 264S-265S
    105. T.G. Knorr, R.W. Hoffmann, Physical Review (1959), 113, 1039-1046
    106. A.G. Dirks, H.J. Leamy, Thin Solid Films (1977), 47, 219-233.
    107. S. Lichter, J. Chen, Phys. Rev. Lett. (1986), 56, 1396-1399
    108. H. van Kranenburg, Obliquely co-evaporated thin films for magnetic recording thesis, University of Twente, 1992
    109. N.V. Pleshivtsev, Cathode Sputtering, Atomizdat, Moscow (1968)
    110. Vacuum Evaporation, in: L.I. MaisseI and R. Glang(Eds.), Handbook of Thin Film Technology, R. Glang, McGraw-Hill, New York, 1970.
    111. S.M. Pfeiffer, H. van Kranenburg, J.C. Lodder, Thin Solid Films (1992), 213, 143-153
    112. B. Lewis, G.J. Rees, Philos. Mag. (1974), 29, 1253-1280
    113. J. M. Nieuwenhuizen, H. B. Haanstra, Philips Tech. Rev. (1966 ), 27, 87
    114. K. Robbie, J. C. Sit, and M. J. Brett, J. Vac. Sci. Technol. B (1998), 16, 1115
    115. R. N. Tait, T. Smy, and M. J. Brett, Thin Solid Films (1993) 226, 196.
    116. B. Tanto, G. Ten Eyck and T.-M. Lu, J. Appl. Phys. (2010), 108, 026107
    117. Y.P. Zhao, D.X. Ye, G.C. Wang, T.M. Lu, Nano Lett. (2002), 2, 351-354
    118. S.V. Kesapragada, D. Gall, Thin Solid Films (2006), 494, 234-239
    119. J. Wang, H. Huang, S.V. Kesapragada, Daniel Gall, Nano Lett. (2005), 5, 2505-2508
    120. K. Robbie, M.J. Brett, A. Lakhtakia, J. Vac. Sci. Technol. A (1995), 13, 2991-2993
    121. K. Robbie, M.J. Brett, A. Lakhtakia, Nature (1999), 384, 616
    122. Z. Huang, K.D. Harris, M.J. Brett, Adv. Mater. (2009), 21, 2983-2987
    123. K. Robbie, J. C. Sit, and M. J. Brett, J. Vac. Sci. Technol. B (1998), 16, 1115
    124. Y.E. Lee, S.G. Kim, Y.J. Kim, H.J. Kim, J. Vac. Sci. Technol. A (1997), 15, 1194-1199
    125. W.K. Choi, L. Li, H.G. Chew, F. Zheng, Nanotechnol. (2007), 18, 385302
    126. A.K. Kar, P. Morrow, X.T. Tang, T.C. Parker, H. Li, J.Y. Dai, M. Shima, G.C. Wang, Nanotechnol. (2007), 18, 295702
    127. R. Teki, T.C. Parker, H. Li, N. Koratkar, T.M. Lu, S. Lee, Thin Solid Films (2008), 516, 4993-4996
    128. Y.J. Jen, C.F. Lin, Opt. Exp. (2008), 16, 5372-5377
    129. M. Suzuki, Y. Taga, J. Appl. Phys. (1992), 71, 2848-2854.
    130. S.R. Kennedy, M.J. Brett, J. Vac. Sci. Technol. B (2004), 22, 1184-1190
    131. M.A. Summers, M.J. Brett, Nanotechnol. (2008), 19, 415203
    132. K. Saxena, D.S. Mehta, R. Srivastava, M.N. Kamalasanan, J. Phys. D: Appl. Phys. 2008, 41, 015102
    133. P.C. Yu; C.H. Chang, C.H. Chiu, C.S. Yang, J.C. Yu, H.C. Kuo, S.H. Hsu, Y.C. Chang, Adv. Mater. (2009), 21, 1618.
    134. S.V. Kesapragada, P. Victor, O. Nalamasu, D. Gall, Nano Lett. (2006), 6, 854-857
    135. Y. He, J. Wu, Y. Zhao, Nano Lett. (2007), 7,1369-1375
    136. Y. He, Y. Zhao, J. Wu, Appl. Phys. Lett. (2008), 92, 063107
    137. Y. He, Y. Zhao, Cryst. Grow. Des. (2010), 10, 440-448
    138. A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Small (2009), 5, 104–111
    139. A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Adv. Funct. Mater. (2009), 19, 1849–1856
    140. N. Li, S.R. Forrest, Appl. Phys. Lett. (2009), 95, 123309
    141. J.P. Singh, F. Tang, T. Karabacak, T.M. Lu, G.C. Wang, J. Vac. Sci. Technol. B (2004), 22, 1048-1051
    142. J. X. Fu, A. Collins, Y.P. Zhao, J. Phys. Chem. C (2008), 112, 16784-16791
    143. R. Jothilakshmi, V. Ramakrishnan, R. Thangavel, J. Kumar, A. Sarua, M. Kuball, J. Raman Spectrosc. (2009), 40, 556.
    144. M. Tsuboi, A. Wada, J. Chem. Phys. (1968), 48, 2615-2618
    145. Y. Huang, M. Liu, Z. Li, Y. Zeng, S. Liu, Mater. Sci. Eng. B (2003), 97, 111-116
    146. B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, E. Ziegler, Phys. Status Solidi B (1983),119, 227
    147. G.J. Exarhos, S.K. Sharma, Thin Solid Films (1995), 270, 27-32
    148. J.N. Zeng, J.K. Low, Z.M. Ren, T. Liew, Y.F. Lu, Appl. Surface Sci. (2002), 197-198, 362-367
    149. Y.Liu, H. Zhang, X. An, C. Gao, Z. Zhang, J. Zhou, M. Zhou, E. Xie, J. Alloys Compounds (2010), 507, 772-776
    150. C.F. Windisch Jr., G.J. Exarhos, C. Yao, L.Q. Wang, J. Appl. Phys. (2007), 101, 123711
    151. G. J. Exarhos, A. Rose, L.Q. Wang, C.F. Windisch Jr., J. Vac. Sci. Technol. A (1998), 16, 1926
    152. Y.M. Strzhemechny, H.L. Mosbacker, D.C. Look, D.C. Reynolds, C.W. Litton, Nelson et al., S. Niki, L.J. Brillson, Appl. Phys. Lett. (2004), 84, 2545
    153. G.J. Exarhos, A. Rose, C.F. Windisch Jr, Thin Solid Films (1997), 308, 56
    154. R. Groenen, M. Creatore, M.C.M. van de Sanden, Appl. Sur. Sci. (2005), 241, 321-325
    155. J.H. Huang, C.P. Liu, Thin Solid Films (2006), 498, 152-157
    156. J.F. Yan, Y.M. Lu, Y.C. Liu, H.W. Liang, B.H. Li, D.Z. Shen, J.Y. Zhang, X.W. Fan, J. Crys. Grow. (2004), 266, 505-510
    157. F. Claeyssens, C.L. Freeman, N.L. Allan, Y. Sun, M.N.R. Ashfold, J.H. Harding, J. Mater. Chem. (2005), 15, 139
    158. M. Kim, Y.J. Hong, J. Yoo, G.C. Yi, G.S. Park, K.J. Kong, H. Chang, Physica Status Solidi (RRL) (2008), 2, 197-199
    159. Y.J. Hong, J. Yoo, Y.J. Doh, S.H. Kang, K.J. Kong, M. Kim, D.R. Lee, K.H.n Oh, G.C. Yi, J. Mater. Chem. (2009), 19, 941-947
    160. S.J.e Baik, J.H. Jang, C.H. Lee, W.Y. Cho, K.S. Lim, Appl. Phys. Lett. (1997), 70 3516-3518
    161. J.Z. Pérez, V.M. Sanjosé, E.P. Lidón, J. Colchero, Appl. Phys. Lett. (2006), 88, 261912
    162. E. Mirica, G. Kowach, P. Evans, H. Du, Cryst. Grow. Des. (2004), 4, 147-156
    163. O. Klutha, B. Rech, L. Houben, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl, H.W. Schock, Thin Solid Films (1999), 351, 247-253
    164. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, J. Appl. Phys. (2007), 101, 074903
    165. P. Wu, G. Saraf, Y. Lu, D.H. Hill, R.A. Bartynski, D.A. Arena, M.Y. Ryu, J.A. Raley, Y.K. Yeo, Appl. Phys. Lett. (2004), 85, 1247-1249
    166. P. M. Verghese, D. R. Clarke, J. Mater. Res. (1999), 14, 1039-1045
    167. J. Ghatak, H.R. Chang, J.H. Huang, Y.F. Lai, K.Y. Hsu, N.C. Chang, C.P. Liu, J. Electrochem. Soc. (2011), 158, H5-H9
    168. K.H. Kim, K.C. Park, D.Y. Ma, J. Appl. Phys. (1997), 81, 7764-7772
    169. R. Groenen, J. Loffler, P.M. Sommeling, J.L. Linden, E.A.G. Hamers, R.E.I. Schropp , M.C.M. van de Sanden, Thin Solid Films (2001), 392, 226-230
    170. A. Janotti, C.G. Van de Walle, Phys. Rev. B (2007), 76, 165202
    171. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. (1996), 79, 7983
    172. P. Erhart, K. Albe, and A. Klein, Phys. Rev. B (2006), 73, 205203
    173. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, Adv. Funct. Mater. (2010), 20, 561–572
    174. J.H. Huang, C.Y. Wang, C.P. Liu, W.H. Chu, Y.J. Chang, Appl. Phys. A (2007), 87, 749-753
    175. M. Suzuki, R. Kita, H. Hara, K. Hamachi, K. Nagai, K. Nakajima, K. Kimura, J. Electrochem. Soc. (2010), 157, K34-K38
    176. J. Wang, H. Huang, S.V. Kesapragada, D. Gall, Nano Lett. (2005), 5, 2505-2508
    177. C.M. Zhou, D. Gall, Thin Solid Films (2006), 515, 1223-1227
    178. Y. He, Y. Zhao, J. Wu, Appl. Phys. Lett. (2008), 92, 063107
    179. J.W.S. Rayleigh, Proc. London Math. Soc. (1880), 11, 51–56
    180. C.G. Bernhard, W.H. Miller, Acta Physiol. Scand. (1962), 56, 385
    181. S.J. Wilson, M.C. Hutley, Optica Acta (1982), 29, 993
    182. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B (2003), 21, 2874
    183. P.B. Clapham, M.C. Hutley, Nature (1973), 244, 281-282
    184. Y.F. Huang, S. Chattopadhyay, Y.J. Jen, C.Y. Peng, T.A. Liu, Y.K. Hsu, C.L. Pan, H.C. Lo, C.H. Hsu, Y.H. Chang, C.S. Lee, K.H. Chen, L.C. Chen, Nat. Nanotechnol. (2007), 2, 770
    185. Z.L. Wang, J. Song, Science (2006), 312, 242
    186. Z.L. Wang, Adv. Mater. (2007), 19, 889–892
    187. J. Song, J. Zhou, Z. L. Wang, Nano Lett. (2006), 6, 1656
    188. R. Yang, Y. Qin, L. Dai, Z.L. Wang,, Nat. Nanotechnol. (2009), 4, 34
    189. C.Y. Chen, J.H. Huang, J. Song, Y. Zhou, L Lin, P.C. Huang, Y. Zhang, C.P. Liu, J.H. He, Z.L. Wang, accepted by ACS Nano

    無法下載圖示 校內:2016-08-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE