| 研究生: |
黃俊翰 Huang, Jun-Han |
|---|---|
| 論文名稱: |
以複合製程成長氧化鋅奈米元件 Fabrication of ZnO Nanodevices by Hybrid Processes |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 氧化鋅 、氫氣 、奈米柱 、傾斜角沉積 、抗反射 、奈米發電機 |
| 外文關鍵詞: | zinc oxide, hydrogen, nano-pillar, oblique-angle deposition, anti-reflection, nanogenerator |
| 相關次數: | 點閱:126 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鋅為一種具有寬能隙(3.3eV)以及大的激子束縛能(exciton binding energy)的半導體,因此在光電領域上具發展潛力,而近年來奈米科技的蓬勃發展,除了許多氧化鋅奈米結構被成長出來外,更引領出許多新的應用,例如抗反射層、奈米發電元件、光感測器、氣體感測器及太陽能電池等等。
本研究以磁控濺鍍製程為主成長具有高度結晶性、大面積均勻性的氧化鋅薄膜及奈米結構,並對於其成長機制以及應用方面進行研究。文中主要討論氫氣於濺鍍製程中所造成的還原環境對於結構的表面形貌、導電性質以及結構所造成的影響,並發展出成長大面積單晶氧化鋅奈米柱的技術,除此之外,本研究後段更結合了傾斜角製程技術,研究出一種以缺陷引入所造成的結構傾斜機制,差排(dislocation)為主的缺陷於奈米結構的暴露面(exposed side)引入造成結構的連續彎曲,本研究以此為基礎結合了化學溶液方法成長出具有良好排列(well-aligned)的傾斜奈米線陣列,這此結構可以應用於抗反射,良好排列的傾斜奈米線也具有良好的光學異向性,除此之外,傾斜奈米線陣列應用於奈米發電元件時,也因為結構的傾斜使得輸出的電壓對於施力方向具有異向性。
ZnO is a promising material with potential applications in electric and optoelectronic devices, due to direct wide bandgap (Eg=3.3eV) semiconducting properties and large exciton binding energy(60meV). Because of fast development of nanotechnology in recent years, various ZnO nanostructures have been successfully grown by different methods, leading to many kinds of applications, such as anti-reflection coating, nano-generator, light sensor, gas sensor and solar cell, etc.
In this study, ZnO thin film and nanostructures were deposited by magnetron sputtering with high crystallinity and large-area uniformity, its growth mechanism and characteristics were also discussed. Introduction of hydrogen during high temperature sputtering was found to affect the morphological, electrical and structural properties, based on its results, large-area single-crystalline ZnO nanorods were successfully grown. Besides, a new nanostructure bending mechanism was also well developed by combining high-temperature reductive sputtering and oblique-angle deposition technology, which is mainly based on introduction of defects on exposed side of nanostructure during growth, leading to continuous columns bending. Oblique ZnO nanowires array were grown on bent columns by subsequent hydrothermal process, excellent anti-reflection property was measured based on this novel structure, well aligned oblique nanowires also show anisotropic optical property. Besides, when oblique nanowire array was adopted in nanogenerator, the output voltage changed with scanning force due to its oblique structure.
1. A. Janotti, Chris G. Van de Walle, Rep. Prog. Phys. (2009), 72, 126501
2. E. Kisi and M. M. Elcombe, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. (1989), C45, 1867
3. Handbook of Sputter Deposition Technology, Kiyotaka Wasa, Shigeru Hayakawa,1991
4. A. F. Kohan, G. Ceder, and D. Morgan, Chris G. Van de Walle, Phys. Rev. B (2000), 61, 15019–15027
5. F. H. Leiter, H. R. Alves, A. Hofstaetter, D. M. Hofmann, and B. K. Meyer, Phys. Stat. Sol. B (2001), 226, R4.
6. W. E. Carlos, E. R. Glaser and D. C. Look, Physica B (2001), 308-310, 976
7. F. Tuomisto, V. Ranki, K. Saarinen, D C. Look, Phys. Rev. Lett. (2003), 91, 205502
8. Chris G. Van de Walle, Phys. Rev. Lett. (2000), 85, 1012-1015
9. S. B. Orlinskii, J. Schmidt, P. G. Baranov, Phys. Rev. Lett. (2002), 88, 045504
10. Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, International Journal of Hydrogen Energy (2004), 29, 323-327
11. D.C. Look, C. Coskun, B. Claflin, G.C. Farlow, Physica B (2003), 340-342, 32-38
12. T. Nakada, Y. Ohkubo, N. M., A. Kunioka, Jpn. J. Appl. Phys. (1995), 34, 3623-3627
13. B.E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, C. G. Granqvist, Phys. Rev. B (1998), 37, 10244
14. J. Han, P. Q. Mantas, A.M.R. Senos, J. Euro. Cer. Soc. (2001), 21, 1883-1886
15. H. Ko, W.P. Tai, K.C. Kim, S.H. Kim, S.J. Suh, Y.S. Kim, J. Cryst. Grow. (2005), 277, 352–358
16. S. Takeda, M. Fukawa, Thin Solid Films (2004), 468, 234-239
17. K. Tominaga, T. Takao, A. Fukushima, T. Moriga, I. Nakabayashi, Vacuum (2002), 66, 505-509
18. T.Y. Ma, D.K. Shim, Thin Solid Films (2002), 410, 8-13
19. S.S. Liu, J.G. Lu; Z.Z. Ye, H.P. He, X.Q. Gu, L.X. Chen, J.Y. Huang, B.H. Zhao, Solid State Commun. (2008), 148, 25–28
20. J. Wu, Y.T. Yang, Mater. Lett. (2008), 62, 1899–1901
21. M. Joesph, H. Tabata, H. Saeki, K. Ueda, T. Kawai, Physica B (2001), 302-303, 140-148
22. Y. Yan, S.B. Zhang, S.T. Pantelides, Phys. Rev. Lett. (2001), 86, 5723
23. T.M. Barnes, K. Olson, C.A. Wolden, Appl. Phys. Lett. (2005), 86, 112112
24. J.M. Bian, X.M. Li, C.Y. Zhang, W.D. Yu, X.D. Gao, Appl. Phys. Lett. (2004), 85, 4070
25. Y.W. Heo, Y.W. Kwon, Y. Li, S.J. Pearton, D.P. Norton, Appl. Phys. Lett. (2004), 84, 3474
26. D.K. Hwang, K.K. Kim, D. C. Look, Y. S. Park, Appl. Sci. Lett. (2005), 86, 151917
27. Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White, J. Cryst. Grow. (2000), 216, 330-334
28. J.C. Fan, C.Y. Zhu, S. Fung, Y.C. Zhong, K.S. Wong, Z. Xie, G. Brauer, W. Anwand, W. Skorupa, C.K. To, B. Yang, C.D. Beling, C.C. Ling, J. Appl. Phys. (2009), 106, 073709
29. L.G. Wang, A. Zunger, Phys. Rev. Lett. (2003), 90, 256401
30. M. Joseph, H. Tabata, H. Saeki, K. Ueda, T. Kawai, Physica B (2001), 302-303, 140-148
31. T. Yamamoto, H.K. Yoshida, Physica B (2001), 302-303, 155-162
32. J.G. Lu, L.P. Zhu, Z.Z. Ye, F. Zhuge, Y.J. Zeng, B.H. Zhao, D.W. Ma, Appl. Surf. Sci. (2005), 245, 109-113
33. J.G. Lu, Z.Z. Ye, F. Zhuge, Y.J. Zeng, B.H. Zhao, L.P. Zhu, Appl. Phys. Lett. (2004), 85, 3134
34. S.H. Jeong, S. Kho, D. Jung, S.B. Lee, J.H. Boo, Surf. Coat. Technol. (2003), 174-175, 187-192
35. S. Nishizawa, T. Tsurumi, H. Hyodo, Y. Ishibashi, N. Ohashi, M. Yamane, O. Fukunaga, Thin Solid Films (1997), 302, 133-139
36. H.J. Ko, S.-K. Hong, Y. Chen, T. Yao, Thin Solid Films (2002), 409, 153-160
37. K. Miyamoto, M. Sana, H. Kato, T. Yao, J. Cryst. Grow. (2004), 265, 34
38. J. Tsujino, N. Homma, T. Sugawara, I. Shimono, Yoshihiko, Thin Solid Films (2002), 407, 86-91
39. W. Lee, M.C. Jeong, J.M. Myoung, Acta Materialia (2004), 52, 3949–3957
40. J.N. Zeng, J.K. Low, Z.M. Ren, Thomas Liew, Y.F. Lu, Appl. Surf. Sci. (2002), 197-198, 362-367
41. N.Takahashi, K. Kaiya, K. Omichi, T. Nakamura, S. Okamoto, H. Yamamoto, J. Cryst. Grow. (2000), 209, 822
42. K. Haga, M. Kamidaira, Y. Kashiwaba, T. Sekiguchi, H. Watanabe, J. Cryst. Grow. (2000), 214-215, 77
43. M.C. Jeong, B.Y. Oh, W. Lee, J.M. Myoung, Appl. Phys. Lett. (2005), 86, 103105
44. M. Purica, E. Budianu , E. Rusu , M. Danila , R. Gavrila, Thin Solid Films (2002), 403 –404, 485–488
45. G. Ning, X. Zhao, J. Li, Opt. Mater. (2004), 27, 1-5
46. W. I. Park, Y. H. Jung, Gyu-Chul Yi, Appl. Phys. Lett. (2003), 82, 964
47. C.H. Hung, W.T. Whang, J. Cryst. Grow. (2004), 268, 242-248
48. B. P. Zhang, N. T. Binh, K. Watasuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, H. Koinuma, Appl. Phys. Lett. (2004), 84, 4098
49. Z. Chen, Z. Shan, M.S. Cao, L. Lu, Scott X Mao, Nanotechnol. (2004), 15, 365-369
50. L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, J. Qi, Appl. Phys. Lett. (2005), 86, 024108-1
51. Z.L. Wang, and J.H. Song, Science (2006), 312, 242-246
52. Y.F. Gao, Z.L. Wang, Nano Lett. (2007), 7, 2499-2505
53. S. Xu, Y. Qin, C. Xu, Y.G. Wei, R.S. Yang, Z. L. Wang, Nat. Nanotechnol. (2010), 5, 366-373
54. X.D. Wang, Y. Ding, Z. Li, J.H. Song, Z. L. Wang, J. Phys. Chem. C (2009), 113, 1791-1794
55. S. N. Das, J.P. Kar, J.H. Choi, T. I. Lee, K. J. Moon, J.M. Myoung, J. Phys. Chem. C (2010), 114, 1689-1693
56. H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater. (2002), 14, 158–160
57. W.Z. Wang, B.Q. Zeng, J. Yang, B. Poudel, J.Y. Huang, M. J. Naughton, and Z.F. Ren, Adv. Mater. (2006), 18, 3275-3278
58. C.H. Liu, J.A. Zapien, Y. Yao, X.M. Meng, C.S. Lee, S.S. Fan, Y. Lifshitz, S.T. Lee, Adv. Mater. (2003), 15, 838–841
59. Mollwo E, Z. Phys. (1954), 138 478
60. A.R. Hutson, Phys. Rev. (1957), 108, 222
61. B.Y. Oh, M.C. Jeong, D.S. Kim, W. Lee, J.M. Myoung, J. Cryst. Grow. (2005), 281, 475-480
62. J.M. Lee, K.K. Kim, S.J. Park, W.K. Choi, Appl. Phy. Lett. (2001), 78, 3842-3844
63. J.B. You, X.W. Zhang, P.F. Cai, J.J. Dong, Y. Gao, Z.G. Yin, N.F. Chen, R.Z. Wang, H. Yan, Appl. Phys. Lett. (2009), 94, 262105
64. S.H. Jo, J.Y. Lao, Z.F. Ren, R.A. Farrer, T. Baldacchini, J.T. Fourkas, Appl Phys Lett (2003), 83, 4821-4823
65. C.G. Van de Walle, Phys. Rev. Lett. 85 (2000) 1012-1015
66. C.G. Van de Walle, J. Neugebauer, Nature (2003), 423, 626-628
67. C.G. Van de Walle, J. Neugebauer, Annu. Rev. Mater. Res.(2006), 36,179–198
68. E.C. Lee, K.J. Chang, Phys. Rev. B (2004), 70, 115210
69. G.A. Shi, M. Saboktakin, M. Stavola, S.J. Pearton, Appl. Phys. Lett. (2004), 85, 5601
70. L.Y. Chen, W.H. Chen, J.J. Wang, F.C.N. Hong, Y.K. Su, Appl. Phys. Lett. (2004), 85, 5628-5630
71. S.B. Orlinskii, J. Schmidt, P.G. Baranov, Phys. Rev. Lett. (2002), 88, 045504
72. M. Sano, K. Miyamoto,H. Kato, T. Yao, J. Appl. Phys. (2004), 95, 5527
73. Y.M. Strzhemechny, H.L. Mosbacker, D.C. Look, D.C. Reynolds, C.W. Litton, Nelson et al., S. Niki, L.J. Brillson, Appl. Phys. Lett.(2004), 84, 2545
74. S.J. Jokela, M.D. McCluskey, KG. Lynn, Physica B (2003), 340-342, 221-224
75. K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, S.O. Kucheyev, C. Jagadish, J.S. Williams, R.G. Wilson, J.M. Zavada, Appl. Phys. Lett. (2002), 81, 3996-3998
76. K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, C.E. Stutz, B. Luo, F. Ren, D.C. Look, J.M. Zavada, Appl. Phys. Lett. (2003), 82. 385-387
77. D.R. Stull, H. Prophet, et al., JANAF Thermochemical Tables, 2nd ed. US. Government Printing Office, Washington, DC, 1971
78. T. Quadir, D.W. Readey, J. Am. Cer. Soc. (1989), 72, 297-302
79. S.Y. Myong, K.S. Lim, Appl. Phys. Lett. (2003), 82, 3026-3028
80. J.J. Wu, H.I Wen, C.H. Tseng, S.H. Liu, Adv. Funct. Mater. (2004), 14, 806-810
81. S. Yoo, S.A. Akbar, K.H. Sandhage, Adv. Mater. (2004), 16, 260-263
82. S. Yoo, S.A. Dregia, S.A. Akbar, H. Rick, K.H. Sandhage, J. Mater. Res. (2006), 21, 1822-1829
83. The Materials Science of Thin Films ( 2nd edition), Milton Ohring, 2001
84. D.M. Mattox, J. Vac. Sci. Technol. A (1989), 7, 1105
85. Principles of Plasma Discharges and Materials Processing (2nd edition), Michael A. Lieberman and Allan J. Lichtenberg, 2005
86. Y. Kajikawa, S. Noda, H. Komiyama, J. Vac. Sci. Technol. A (2003), 21, 1943-1954
87. S. Nicolay, S. Fay, C. Ballif, Cryst. Grow. Des. (2009), 9, 4957-4962
88. X.L. Chen, X.H. Geng, J.M. Xue, D.K. Zhang, G.F. Hou, Y. Zhao, J. Cryst. Grow. (2006), 296, 43-50
89. A. van der Drift, Philips Res. Pep. (1967), 22, 267-288
90. E.A. Matson, S.A. Polyakov, Physica Status Solidi (a) (1977), 41, K93–K95
91. Y. Kajikawa, J. Cryst. Grow. (2006), 289, 387-384
92. Y. Gu, J. Qi, Y. Zhang, Mater. Sci. Forum (2007), 561-565, 1861-1864
93. M. Matsuoka, K. Ono, Appl. Phys. Lett. (1988), 53, 1393
94. P. Sharma, K. Sreenivas, K.V. Rao, J. Appl. Phys. (2003), 93, 3963
95. S.J. Henley, M.N.R. Ashfold, D. Cherns, Thin Solid Films (2002), 422, 69-72
96. L.C. Nistor, C. Ghica, D. Matei, G. Dinescu, M. Dinescu, G. Van Tendeloo, J. Cryst. Grow. (2005), 277, 26-31
97. T. Hiramatsu, M. Furuta, H. Furuta, T. Matsuda, C. Li, T. Hirao, J. Cryst. Grow. (2009), 311, 282-285
98. Y. Cui, G. Du, Y. Zhang, H. Zhu, B. Zhang, J. Cryst. Grow. (2005), 282,389-393
99. X.L. Chen, X.H. Geng, J.M. Xue, D.K. Zhang, G.F. Hou, Y. Zhao, J. Cryst. Grow. (2006), 296, 43-50
100. D.N. Lee, Mater. Sci. Forum (2002), 408-412, 75-94
101. J.I. Hong, J. Bae, Z.L. Wang, R.L. Snyder, Nanotechnol. (2009), 20, 085609
102. T. Yanagitani, M. Kiuchi, Jap. J. Appl. Phys. (2007), 46, L1167–L1169
103. B.Y. Oh, W.K. Lee, Y.H. Kim, D.S. Seo, J. Appl. Phys. (2009), 105, 054506
104. D.O. Smith, J. Appl. Phys. (1959), 30, 264S-265S
105. T.G. Knorr, R.W. Hoffmann, Physical Review (1959), 113, 1039-1046
106. A.G. Dirks, H.J. Leamy, Thin Solid Films (1977), 47, 219-233.
107. S. Lichter, J. Chen, Phys. Rev. Lett. (1986), 56, 1396-1399
108. H. van Kranenburg, Obliquely co-evaporated thin films for magnetic recording thesis, University of Twente, 1992
109. N.V. Pleshivtsev, Cathode Sputtering, Atomizdat, Moscow (1968)
110. Vacuum Evaporation, in: L.I. MaisseI and R. Glang(Eds.), Handbook of Thin Film Technology, R. Glang, McGraw-Hill, New York, 1970.
111. S.M. Pfeiffer, H. van Kranenburg, J.C. Lodder, Thin Solid Films (1992), 213, 143-153
112. B. Lewis, G.J. Rees, Philos. Mag. (1974), 29, 1253-1280
113. J. M. Nieuwenhuizen, H. B. Haanstra, Philips Tech. Rev. (1966 ), 27, 87
114. K. Robbie, J. C. Sit, and M. J. Brett, J. Vac. Sci. Technol. B (1998), 16, 1115
115. R. N. Tait, T. Smy, and M. J. Brett, Thin Solid Films (1993) 226, 196.
116. B. Tanto, G. Ten Eyck and T.-M. Lu, J. Appl. Phys. (2010), 108, 026107
117. Y.P. Zhao, D.X. Ye, G.C. Wang, T.M. Lu, Nano Lett. (2002), 2, 351-354
118. S.V. Kesapragada, D. Gall, Thin Solid Films (2006), 494, 234-239
119. J. Wang, H. Huang, S.V. Kesapragada, Daniel Gall, Nano Lett. (2005), 5, 2505-2508
120. K. Robbie, M.J. Brett, A. Lakhtakia, J. Vac. Sci. Technol. A (1995), 13, 2991-2993
121. K. Robbie, M.J. Brett, A. Lakhtakia, Nature (1999), 384, 616
122. Z. Huang, K.D. Harris, M.J. Brett, Adv. Mater. (2009), 21, 2983-2987
123. K. Robbie, J. C. Sit, and M. J. Brett, J. Vac. Sci. Technol. B (1998), 16, 1115
124. Y.E. Lee, S.G. Kim, Y.J. Kim, H.J. Kim, J. Vac. Sci. Technol. A (1997), 15, 1194-1199
125. W.K. Choi, L. Li, H.G. Chew, F. Zheng, Nanotechnol. (2007), 18, 385302
126. A.K. Kar, P. Morrow, X.T. Tang, T.C. Parker, H. Li, J.Y. Dai, M. Shima, G.C. Wang, Nanotechnol. (2007), 18, 295702
127. R. Teki, T.C. Parker, H. Li, N. Koratkar, T.M. Lu, S. Lee, Thin Solid Films (2008), 516, 4993-4996
128. Y.J. Jen, C.F. Lin, Opt. Exp. (2008), 16, 5372-5377
129. M. Suzuki, Y. Taga, J. Appl. Phys. (1992), 71, 2848-2854.
130. S.R. Kennedy, M.J. Brett, J. Vac. Sci. Technol. B (2004), 22, 1184-1190
131. M.A. Summers, M.J. Brett, Nanotechnol. (2008), 19, 415203
132. K. Saxena, D.S. Mehta, R. Srivastava, M.N. Kamalasanan, J. Phys. D: Appl. Phys. 2008, 41, 015102
133. P.C. Yu; C.H. Chang, C.H. Chiu, C.S. Yang, J.C. Yu, H.C. Kuo, S.H. Hsu, Y.C. Chang, Adv. Mater. (2009), 21, 1618.
134. S.V. Kesapragada, P. Victor, O. Nalamasu, D. Gall, Nano Lett. (2006), 6, 854-857
135. Y. He, J. Wu, Y. Zhao, Nano Lett. (2007), 7,1369-1375
136. Y. He, Y. Zhao, J. Wu, Appl. Phys. Lett. (2008), 92, 063107
137. Y. He, Y. Zhao, Cryst. Grow. Des. (2010), 10, 440-448
138. A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Small (2009), 5, 104–111
139. A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Adv. Funct. Mater. (2009), 19, 1849–1856
140. N. Li, S.R. Forrest, Appl. Phys. Lett. (2009), 95, 123309
141. J.P. Singh, F. Tang, T. Karabacak, T.M. Lu, G.C. Wang, J. Vac. Sci. Technol. B (2004), 22, 1048-1051
142. J. X. Fu, A. Collins, Y.P. Zhao, J. Phys. Chem. C (2008), 112, 16784-16791
143. R. Jothilakshmi, V. Ramakrishnan, R. Thangavel, J. Kumar, A. Sarua, M. Kuball, J. Raman Spectrosc. (2009), 40, 556.
144. M. Tsuboi, A. Wada, J. Chem. Phys. (1968), 48, 2615-2618
145. Y. Huang, M. Liu, Z. Li, Y. Zeng, S. Liu, Mater. Sci. Eng. B (2003), 97, 111-116
146. B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, E. Ziegler, Phys. Status Solidi B (1983),119, 227
147. G.J. Exarhos, S.K. Sharma, Thin Solid Films (1995), 270, 27-32
148. J.N. Zeng, J.K. Low, Z.M. Ren, T. Liew, Y.F. Lu, Appl. Surface Sci. (2002), 197-198, 362-367
149. Y.Liu, H. Zhang, X. An, C. Gao, Z. Zhang, J. Zhou, M. Zhou, E. Xie, J. Alloys Compounds (2010), 507, 772-776
150. C.F. Windisch Jr., G.J. Exarhos, C. Yao, L.Q. Wang, J. Appl. Phys. (2007), 101, 123711
151. G. J. Exarhos, A. Rose, L.Q. Wang, C.F. Windisch Jr., J. Vac. Sci. Technol. A (1998), 16, 1926
152. Y.M. Strzhemechny, H.L. Mosbacker, D.C. Look, D.C. Reynolds, C.W. Litton, Nelson et al., S. Niki, L.J. Brillson, Appl. Phys. Lett. (2004), 84, 2545
153. G.J. Exarhos, A. Rose, C.F. Windisch Jr, Thin Solid Films (1997), 308, 56
154. R. Groenen, M. Creatore, M.C.M. van de Sanden, Appl. Sur. Sci. (2005), 241, 321-325
155. J.H. Huang, C.P. Liu, Thin Solid Films (2006), 498, 152-157
156. J.F. Yan, Y.M. Lu, Y.C. Liu, H.W. Liang, B.H. Li, D.Z. Shen, J.Y. Zhang, X.W. Fan, J. Crys. Grow. (2004), 266, 505-510
157. F. Claeyssens, C.L. Freeman, N.L. Allan, Y. Sun, M.N.R. Ashfold, J.H. Harding, J. Mater. Chem. (2005), 15, 139
158. M. Kim, Y.J. Hong, J. Yoo, G.C. Yi, G.S. Park, K.J. Kong, H. Chang, Physica Status Solidi (RRL) (2008), 2, 197-199
159. Y.J. Hong, J. Yoo, Y.J. Doh, S.H. Kang, K.J. Kong, M. Kim, D.R. Lee, K.H.n Oh, G.C. Yi, J. Mater. Chem. (2009), 19, 941-947
160. S.J.e Baik, J.H. Jang, C.H. Lee, W.Y. Cho, K.S. Lim, Appl. Phys. Lett. (1997), 70 3516-3518
161. J.Z. Pérez, V.M. Sanjosé, E.P. Lidón, J. Colchero, Appl. Phys. Lett. (2006), 88, 261912
162. E. Mirica, G. Kowach, P. Evans, H. Du, Cryst. Grow. Des. (2004), 4, 147-156
163. O. Klutha, B. Rech, L. Houben, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl, H.W. Schock, Thin Solid Films (1999), 351, 247-253
164. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, J. Appl. Phys. (2007), 101, 074903
165. P. Wu, G. Saraf, Y. Lu, D.H. Hill, R.A. Bartynski, D.A. Arena, M.Y. Ryu, J.A. Raley, Y.K. Yeo, Appl. Phys. Lett. (2004), 85, 1247-1249
166. P. M. Verghese, D. R. Clarke, J. Mater. Res. (1999), 14, 1039-1045
167. J. Ghatak, H.R. Chang, J.H. Huang, Y.F. Lai, K.Y. Hsu, N.C. Chang, C.P. Liu, J. Electrochem. Soc. (2011), 158, H5-H9
168. K.H. Kim, K.C. Park, D.Y. Ma, J. Appl. Phys. (1997), 81, 7764-7772
169. R. Groenen, J. Loffler, P.M. Sommeling, J.L. Linden, E.A.G. Hamers, R.E.I. Schropp , M.C.M. van de Sanden, Thin Solid Films (2001), 392, 226-230
170. A. Janotti, C.G. Van de Walle, Phys. Rev. B (2007), 76, 165202
171. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. (1996), 79, 7983
172. P. Erhart, K. Albe, and A. Klein, Phys. Rev. B (2006), 73, 205203
173. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, Adv. Funct. Mater. (2010), 20, 561–572
174. J.H. Huang, C.Y. Wang, C.P. Liu, W.H. Chu, Y.J. Chang, Appl. Phys. A (2007), 87, 749-753
175. M. Suzuki, R. Kita, H. Hara, K. Hamachi, K. Nagai, K. Nakajima, K. Kimura, J. Electrochem. Soc. (2010), 157, K34-K38
176. J. Wang, H. Huang, S.V. Kesapragada, D. Gall, Nano Lett. (2005), 5, 2505-2508
177. C.M. Zhou, D. Gall, Thin Solid Films (2006), 515, 1223-1227
178. Y. He, Y. Zhao, J. Wu, Appl. Phys. Lett. (2008), 92, 063107
179. J.W.S. Rayleigh, Proc. London Math. Soc. (1880), 11, 51–56
180. C.G. Bernhard, W.H. Miller, Acta Physiol. Scand. (1962), 56, 385
181. S.J. Wilson, M.C. Hutley, Optica Acta (1982), 29, 993
182. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B (2003), 21, 2874
183. P.B. Clapham, M.C. Hutley, Nature (1973), 244, 281-282
184. Y.F. Huang, S. Chattopadhyay, Y.J. Jen, C.Y. Peng, T.A. Liu, Y.K. Hsu, C.L. Pan, H.C. Lo, C.H. Hsu, Y.H. Chang, C.S. Lee, K.H. Chen, L.C. Chen, Nat. Nanotechnol. (2007), 2, 770
185. Z.L. Wang, J. Song, Science (2006), 312, 242
186. Z.L. Wang, Adv. Mater. (2007), 19, 889–892
187. J. Song, J. Zhou, Z. L. Wang, Nano Lett. (2006), 6, 1656
188. R. Yang, Y. Qin, L. Dai, Z.L. Wang,, Nat. Nanotechnol. (2009), 4, 34
189. C.Y. Chen, J.H. Huang, J. Song, Y. Zhou, L Lin, P.C. Huang, Y. Zhang, C.P. Liu, J.H. He, Z.L. Wang, accepted by ACS Nano
校內:2016-08-10公開