簡易檢索 / 詳目顯示

研究生: 李玟翰
Lee, Wen-Han
論文名稱: 研究USP24抑制劑誘導的自噬作用在阻斷抗藥性的角色及分子機制
Studying the role and molecular mechanism of USP24 inhibitor-induced autophagy in blocking drug resistance
指導教授: 洪建中
Hung, Jan-Jong
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 54
中文關鍵詞: 肺癌抗藥性USP24自噬作用
外文關鍵詞: lung cancer, drug resistance, USP24, autophagy
相關次數: 點閱:30下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺癌為發生率以及致死率最高的癌症,究其主要的原因,最大的關鍵在於治療期間病人會產生抗藥性,進而造成癌症復發及惡化。如何在治療過程中阻止抗藥性的發生是增加癌症病患存活率最重要的因素。實驗室已發現USP24會促進化療時所產生的抗藥性,並已發展新穎的藥物USP24-i抑制抗藥性的產生,進一步釐清其分子機制是重要的議題。首先,使用USP24-i處理肺癌抗藥性細胞A549-T24,發現自噬作用的重要蛋白LC3B大量表現。免疫螢光染色和電子顯微鏡觀察USP24-i處理的抗藥性細胞,顯示大量的自噬作用產生於細胞內。也發現實驗室建構USP24基因剔除鼠體重下降以及LC3B的表現量明顯增加。另外,也使用USP24-i處理正常的小鼠,發現LC3B表現量明顯增加。綜合體外和體內結果皆顯示抑制USP24會促進自噬作用的產生。本研究使用了對抑制抗藥性有不同效果的藥物處理抗藥性細胞,發現LC3B表現量與藥物的效果成正比。接著將自噬作用阻斷,發現抑制自噬作用也抑制了USP24-i對於抗藥性的抑制作用。接下來本研究嘗試探討USP24-i誘發自噬作用的分子機制。發現自噬作用上游的ULK, LC3及p62的mRNA和蛋白質表現量明顯的上升,代表抑制USP24會透過增加這些蛋白的表現量來誘發自噬作用,這些研究對於USP24在抗藥的角色及其機制提供了清楚的證據。

    According to statistics from the World Health Organization, one in six deaths is due to cancer. Abnormal cell growth occurs in almost all organs and tissues in the body, and it can also metastasize to other parts of the body. Among all cancers, lung cancer has the highest incidence and mortality rate. The main reason is patient will develop drug resistance during the treatment, which will cause cancer to recur and worsen. How to prevent the occurrence of drug resistance during treatment is the most critical factor in increasing the survival rate of cancer patients. Our previous studies have shown that Ubiquitin-specific Peptidase 24 (USP24) can promote drug resistance during chemotherapy. We have developed a novel drug, USP24-i, to inhibit the development of drug resistance. Further clarification of its molecular mechanism is an important issue. First, we used USP24-i to treat lung cancer drug-resistant cells A549-T24. We found that the essential proteins of autophagy, LC3B, were expressed in large quantities. We also use immunofluorescence and electron microscope to observe drug-resistant cells treated with USP24-i. The results showed that USP24-i caused a large amount of autolysosome. In addition, we construct USP24 knockout mice (USP24C1695A) by using CRISPR/Cas9. We also found that the weight of USP24C1695A mice decreased significantly, and the expression of LC3B also increased significantly. In addition, we also used USP24-i to treat normal mice and found significantly increased expression of LC3B in mice. So far, our in vitro and in vivo results show that inhibiting USP24 can induce autophagy. Finally, we are wondering whether there is a causal relationship between autophagy and drug resistance. Therefore, we used Bafilomycin A1 to block autophagy. We found that inhibiting autophagy also inhibited the inhibitory effect of USP24-i on drug resistance. All the data showed that the autophagy induced by USP24-i is necessary for USP24-i to inhibit drug resistance. Next, we try to explore the molecular mechanism that inhibits the autophagy induced by USP24. We found that the inhibition of USP24 can induce autophagy by increasing the expression of ULK, LC3, and p62. Our research provides clear evidence for the role of USP24 in drug resistance and its mechanism.

    中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 圖目錄 X 附圖目錄 XI 縮寫表 XII 一、 研究背景 1 1-1 前言 1 1-2 肺癌 (Lung cancer) 1 1-3 藥物抗藥性 (Drug resistance) 2 1-4 泛素化及去泛素化作用 (Ubiquitination and deubiquitination) 3 1-5 去泛素化酵素 (Deubiquitination enzymes, DUBs) 3 1-6 泛素特異性胜肽酶二十四 (Ubiquitin specific peptidase 24, USP24) 4 1-7 自噬作用 (Autophagy) 6 1-8 研究目的 7 二、 材料與方法 8 2-1 細胞培養 (Cell culture) 8 2-2 培養對化療藥物產生抗藥性之肺癌細胞株 8 2-3 西方墨點法 (Western blotting) 9 2-4 質體的轉染 (Plasmid transfection) 11 2-5 免疫螢光染色 (Immunofluorescence) 12 2-6 穿透式電子顯微鏡 12 2-7 聚合酶連鎖反應 (Polymerase chain reaction, PCR) 12 2-8 動物實驗 (Animal experiment) 13 2-9 萃取RNA (RNA extraction) 13 2-10 反轉錄-聚合酶連鎖反應 14 2-11 定量即時聚合酶連鎖反應 14 2-12 數據分析 (Statistical analysis) 15 三、 結果 16 3-1 在抗藥肺癌細胞中抑制USP24會誘發細胞自噬作用 16 3-2 USP24基因剔除鼠誘發個體自噬作用 19 3-3 抑制USP24-i所誘導的自噬作用會去除USP24-i抑制抗藥性的效果 20 3-4 USP24抑制劑誘導自噬作用之機制 21 四、 討論 22 參考文獻 26 圖表 32 附圖 53

    Ajabnoor, G., Crook, T., and Coley, H.M. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death and Disease 3, e260, 2012.
    Baudino, T. Targeted cancer therapy: the next generation of cancer treatment. Current Drug Discovery Technologies 12, 3-20, 2015.
    Brazill, D.T., Meyer, L.R., Hatton, R.D., Brock, D.A., and Gomer, R.H. ABC transporters required for endocytosis and endosomal pH regulation in Dictyostelium. Journal of Cell Science 114, 3923-3932, 2001.
    Chiu, L.Y., Hu, M.E., Yang, T.Y., Hsin, I.L., Ko, J.L., Tsai, K.J., and Sheu, G.T. Immunomodulatory protein from Ganoderma microsporum induces pro-death autophagy through Akt-mTOR-p70S6K pathway inhibition in multidrug resistant lung cancer cells. PLoS One 10, e0125774, 2015.
    Ciechanover, A. Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Bioorganic and Medicinal Chemistry 21, 3400-3410, 2013.
    Clague, M.J., Heride, C., and Urbé, S. The demographics of the ubiquitin system. Trends in Cell Biology 25, 417-426, 2015.
    Curtin, N.J. DNA repair dysregulation from cancer driver to therapeutic target. Nature Reviews Cancer 12, 801-817, 2012.
    De Mello, R.A., Neves, N.M., Tadokoro, H., Amaral, G.A., Castelo-Branco, P., and Zia, V.A.d.A. New Target Therapies in Advanced Non-Small Cell Lung Cancer: A Review of the Literature and Future Perspectives. Journal of Clinical Medicine 9, 3543, 2020.
    Deng, L., Meng, T., Chen, L., Wei, W., and Wang, P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduction and Targeted Therapy 5, 1-28, 2020.
    Dikic, I. Proteasomal and autophagic degradation systems. Annual Review of Biochemistry 86, 193-224, 2017.
    Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D., Piñeros, M., Znaor, A., and Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer 144, 1941-1953, 2019.
    Galluzzi, L., Bravo-San Pedro, J.M., Levine, B., Green, D.R., and Kroemer, G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nature Reviews Drug Discovery 16, 487, 2017.
    Gennaro, V.J., Stanek, T.J., Peck, A.R., Sun, Y., Wang, F., Qie, S., Knudsen, K.E., Rui, H., Butt, T., and Diehl, J.A. Control of CCND1 ubiquitylation by the catalytic SAGA subunit USP22 is essential for cell cycle progression through G1 in cancer cells. Proceedings of the National Academy of Sciences of the United States of America 115, E9298-E9307, 2018.
    Gridelli, C., Rossi, A., Carbone, D.P., Guarize, J., Karachaliou, N., Mok, T., Petrella, F., Spaggiari, L., and Rosell, R. Non-small-cell lung cancer. Nature Reviews Disease Primers 1, 1-16, 2015.
    Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., and Okano, H. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889, 2006.
    Hilgendorf, C., Ahlin, G., Seithel, A., Artursson, P., Ungell, A.L., and Karlsson, J. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metabolism and Disposition 35, 1333-1340, 2007.
    Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., and Sarkar, S. Drug resistance in cancer: an overview. Cancers 6, 1769-1792, 2014.
    Hung, C.Y., Wang, Y.C., Chuang, J.Y., Young, M.J., Liaw, H., Chang, W.C., and Hung, J.J. Nm23-H1-stabilized hnRNPA2/B1 promotes internal ribosomal entry site (IRES)-mediated translation of Sp1 in the lung cancer progression. Scientific Reports 7, 1-13, 2017.
    Imarisio, S., Carmichael, J., Korolchuk, V., Chen, C.W., Saiki, S., Rose, C., Krishna, G., Davies, J.E., Ttofi, E., and Underwood, B.R. Huntington's disease: from pathology and genetics to potential therapies. Biochemical Journal 412, 191-209, 2008.
    Levine, B., and Klionsky, D.J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell 6, 463-477, 2004.
    Levy, J.M.M., Towers, C.G., and Thorburn, A. Targeting autophagy in cancer. Nature Reviews Cancer 17, 528-542, 2017.
    Li, Y.J., Lei, Y.H., Yao, N., Wang, C.R., Hu, N., Ye, W.C., Zhang, D.M., and Chen, Z.S. Autophagy and multidrug resistance in cancer. Chinese Journal of Cancer 36, 1-10, 2017.
    Li, F., Guo, H., Yang, Y., Feng, M., Liu, B., Ren, X., and Zhou, H. Autophagy modulation in bladder cancer development and treatment. Oncology Reports 42, 1647-1655, 2019.
    Lin, Q., Dai, Q., Meng, H., Sun, A., Wei, J., Peng, K., Childress, C., Chen, M., Shao, G., and Yang, W. The HECT E3 ubiquitin ligase NEDD4 interacts with and ubiquitylates SQSTM1 for inclusion body autophagy. Journal of Cell Science 130, 3839-3850, 2017.
    Liu, J., Xia, H., Kim, M., Xu, L., Li, Y., Zhang, L., Cai, Y., Norberg, H.V., Zhang, T., and Furuya, T. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147, 223-234, 2011.
    Liu, W.j., Du, Y., Wen, R., Yang, M., and Xu, J. Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacology and Therapeutics 206, 107438, 2020.
    Longley, D., and Johnston, P. Molecular mechanisms of drug resistance. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland 205, 275-292, 2005.
    Metzger, S., Saukko, M., Van Che, H., Tong, L., Puder, Y., Riess, O., and Nguyen, H.P. Age at onset in Huntington’s disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7. Human Genetics 128, 453-459, 2010.
    Nazio, F., Carinci, M., and Cecconi, F. ULK1 ubiquitylation is regulated by phosphorylation on its carboxy terminus. Cell Cycle 16, 1744-1747, 2017.
    Osmani, L., Askin, F., Gabrielson, E., and Li, Q.K. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Seminars in Cancer Biology 52, 103-109, 2018.
    Öst, A., Svensson, K., Ruishalme, I., Brännmark, C., Franck, N., Krook, H., Sandström, P., Kjolhede, P., and Strålfors, P. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Molecular Medicine 16, 235-246, 2010.
    Polager, S., Ofir, M., and Ginsberg, D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 27, 4860-4864, 2008.
    Popovic, D., Vucic, D., and Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nature Medicine 20, 1242-1253, 2014.
    Pozhidaeva, A., and Bezsonova, I. USP7: Structure, substrate specificity, and inhibition. DNA Repair 76, 30-39, 2019.
    Pyo, J.O., Yoo, S.M., Ahn, H.H., Nah, J., Hong, S.H., Kam, T.I., Jung, S., and Jung, Y.K. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nature Communications 4, 1-9, 2013.
    Qadir, M.A., Kwok, B., Dragowska, W.H., To, K.H., Le, D., Bally, M., and Gorski, S.M. Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Research and Treatment 112, 389-403, 2008.
    Reyes-Turcu, F.E., Ventii, K.H., and Wilkinson, K.D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual Review of Biochemistry 78, 363-397, 2009.
    Rubinsztein, D.C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780-786, 2006.
    Shan, J., Zhao, W., and Gu, W. Suppression of cancer cell growth by promoting cyclin D1 degradation. Molecular Cell 36, 469-476, 2009.
    Sun, W.L., Chen, J., Wang, Y.P., and Zheng, H. Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development. Autophagy 7, 1035-1044, 2011.
    Thayer, J.A., Awad, O., Hegdekar, N., Sarkar, C., Tesfay, H., Burt, C., Zeng, X., Feldman, R.A., and Lipinski, M.M. The PARK10 gene USP24 is a negative regulator of autophagy and ULK1 protein stability. Autophagy 16, 140-153, 2020.
    Towers, C.G., and Thorburn, A. Therapeutic targeting of autophagy. EBioMedicine 14, 15-23, 2016.
    Vazquez-Martin, A., Oliveras-Ferraros, C., and Menendez, J.A. Autophagy facilitates the development of breast cancer resistance to the anti-HER2 monoclonal antibody trastuzumab. PLoS One 4, e6251, 2009.
    Vasan, N., Baselga, J., and Hyman, D.M. A view on drug resistance in cancer. Nature 575, 299-309, 2019.
    Wang, S.A., Wang, Y., Chuang, Y., Huang, Y.H., Su, W., Chang, W., and Hung, J. EGF-mediated inhibition of ubiquitin-specific peptidase 24 expression has a crucial role in tumorigenesis. Oncogene 36, 2930-2945, 2017.
    Wang, S.A., Young, M.J., Wang, Y.C., Chen, S.H., Liu, C.Y., Lo, Y.A., Jen, H.H., Hsu, K.C., and Hung, J.J. USP24 promotes drug resistance during cancer therapy. Cell Death and Differentiation, 1-18, 2021.
    Wang, Y.C., Wu, Y.S., Hung, C.Y., Wang, S.A., Young, M.J., Hsu, T.I., and Hung, J.J. USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy. Nature Communications 9, 1-18, 2018.
    Wang, Y., Serricchio, M., Jauregui, M., Shanbhag, R., Stoltz, T., Di Paolo, C.T., Kim, P.K., and McQuibban, G.A. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11, 595-606, 2015.
    Zhang, C., Lu, J., Zhang, Q.W., Zhao, W., Guo, J.H., Liu, S.L., Wu, Y.L., Jiang, B., and Gao, F.H. USP7 promotes cell proliferation through the stabilization of Ki-67 protein in non-small cell lung cancer cells. The International Journal of Biochemistry and Cell Biology 79, 209-221, 2016.
    Zhang, L., and Gong, F. Involvement of USP24 in the DNA damage response. Molecular and Cellular Oncology 3, e1011888, 2016.

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE