簡易檢索 / 詳目顯示

研究生: 楊智凱
Yang, Chih-Kai
論文名稱: 可溶液式高介電常數鋯鈦酸鋇絕緣層於五環素薄膜電晶體與記憶體元件之應用
Solution-processed Barium Zirconate Titanate for Pentacene-based Thin Film Transistors and Memory Applications
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 86
中文關鍵詞: 有機薄膜電晶體五環素高介電常數記憶體載子傳輸
外文關鍵詞: organic thin film transistor, pentacene, high dielectric constant, memory, carrier transports
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用溶液式介電材料鋯鈦酸鋇於五環素有機薄膜電晶體,並展現優異的電晶體特性,如:高場效載子遷移率(7.31 cm2V-1s-1)、低臨界電壓(-1.6 V)以及低次臨界效應(162 mV/decade)。首先使用XPS分析鋯鈦酸鋇薄膜的化學成分組成以及束縛能,並透過AFM與XRD的分析,來得知五環素於鋯鈦酸鋇薄膜上之晶粒型態與結晶區域大小。而藉由分析拉曼光譜與紫外光/可見光光譜,我們可以得知五環素分子間的耦合作用力與重組能的大小,並進一步驗證載子遷移率與載子跳躍率之直接關係。最後,我們也根據鋯鈦酸鋇薄膜經過300℃之退火處理後所展現的非揮發性記憶體特性,來探討其記憶體機制。

    Pentacene-based organic thin-film transistors with solution-processed barium zirconate titanate (Ba0.95Ti0.55Zr0.17O3.33, BZT) as gate dielectrics were demonstrated in this paper. Electrical properties of pentacene-based thin-film transistors show high field-effect mobility of 7.31 cm2V-1s-1, low threshold voltage of -1.6 V, and low subthreshold swing of 162 mV/decade. The chemical composition and binding energy of the solution-processed BZT thin-film were analyzed through X-ray photoelectron spectroscopy. The surface morphology and crystalline size were analyzed by atomic force microscope and X-ray diffraction, respectively. Moreover, the relationship between hopping rate and field-effect mobility was verified by quantifying the values of intermolecular coupling and reorganization energy from the March–Hush equation via Raman spectra and ultraviolet/visible light spectra measurements, respectively. Finally, the operating mechanism of memory was discussed based on the memory characteristics of the devices at 300 °C annealing temperature.

    摘要 I Abstract II 致謝 IV Contents V Figure Captions VIII Table Captions X Chapter 1 Introduction 1 1-1 Introduction to the development of OTFTs 1 1-2 Advantages of OTFTs 1 1-3 Motivation 2 1-4 Organization 4 Chapter 2 Organic Semiconductor 7 2-1 Organic semiconductor materials 7 2-2 Charge transport mechanisms 8 2-3 Marcus–Hush equation 9 2-4 Reorganization energy 10 2-5 Intermolecular coupling 11 Chapter 3 Principle of OTFT and Memory Device 15 3-1 Thin-film transistor architecture 15 3-2 Operating mode 17 3-3 Important parameters of OTFTs 19 3-3-1 Field-effect mobility 19 3-3-2 Threshold voltage 20 3-3-3 Subthreshold swing 21 3-3-4 On/off current ratio 21 3-4 Oxide charges 24 3-4-1 Interface tapped charge (Qit) 24 3-4-2 Fixed oxide charge (Qf) 24 3-4-3 Oxide trapped charge (Qot) 24 3-4-4 Mobile ionic charge (Qm) 25 3-5 Parameters of non-volatile memory device 26 3-5-1 Memory window 26 3-5-2 Retention 26 3-5-3 Endurance 26 Chapter 4 Experiment 28 4-1 Experimental materials 28 4-2 Fabrication equipment 32 4-2-1 Sputter, physical vapor deposition (PVD) 32 4-2-2 Thermal evaporator 32 4-2-3 Spin coater 33 4-3 Solution preparation 35 4-4 Experimental procedure 35 4-4-1 Substrate cleaning 35 4-4-2 Gate electrode 36 4-4-3 Insulator layer 36 4-4-3-1 Without annealing 36 4-4-3-2 With annealing 37 4-4-4 Active layer 37 4-4-5 Source and drain electrodes 37 4-5 Measurement system 42 4-5-1 Current–Voltage (I–V) measurement 42 4-5-2 Capacitance–Voltage (C–V) measurement 42 4-5-3 Atomic Force Microscope 42 4-5-4 X-ray Photoelectron Spectroscopy (XPS) 43 4-5-5 X-ray Diffraction (XRD) 43 4-5-6 Microscope Raman Spectrometer 44 4-5-7 Ultraviolet and Visible (UV/VIS) Spectrophotometer 44 Chapter 5 Results and Discussion 47 5-1 Chemical compositional analysis 47 5-2 Electrical properties 51 5-2-1 MIM measurement 51 5-2-2 I–V measurement 53 5-3 Analyses of pentacene molecules 56 5-3-1 Crystallization 56 5-3-2 Surface morphology 60 5-3-3 Intermolecular coupling 62 5-3-4 Reorganization energy 65 5-3-5 Hopping rate 68 5-4 Characteristics of non-volatile memory 70 Chapter 6 Conclusions and Future Works 78 6-1 Conclusions 78 6-2 Future works 79 References 81

    [1] A. Tsumura, K. Koezuka, and T. Ando, “Macromolecular Electronic Device Field-Effect Transistor with a Polythiophene Thin Film,” Appl. Phys. Lett., vol. 49, p. 1210, 1986.
    [2] H. E. Katz, “Organic Molecular Solids as Thin Film Transistor Semiconductors,“ J. Mater. Chem., vol. 7, p. 369, 1997.
    [3] C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Adv. Mater., vol. 14, p. 99, 2002.
    [4] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson,” Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron. Device Lett., vol. 18, pp. 606–608, 1997.
    [5] http://www.polyic.com/press-images.php
    [6] http://en.wikipedia.org/wiki/Electronic_paper
    [7] C.Y. Wei, S. H. Kuo, Y.M. Hung, W. C. Huang, F. Adriyanto, and Y. H. Wang, “High-Mobility Pentacene-Based Thin-Film Transistors with a Solution-Processed Barium Titanate Insulators,” vol. 32, p. 90, 2011.
    [8] Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, et al., “Ferroelectric Thin Films: Review of Materials, Properties, and Applications,” J. Appl. Phys., vol. 100, p. 051606, 2006.
    [9] Y. Xu, and J. D. Mackenzie, “A Theoretical Explanation for Ferroelectric-Like Properties of Amorphous Pb(ZrxTi1-x)O3 and BaTiO3,” J. Non-Cryst. Solids, vol. 246, p. 136, 1999.
    [10] J. Zhai, X. Yao, L. Zhang, and B. Shen, “Dielectric nonlinear Characteristics of Ba(Zr0.35Ti0.65)O3 Thin Films Grown by a Sol-Gel Process,” Appl. Phys. Lett., vol. 84, p. 3136, 2004.
    [11] N. Nanakorn, P. Jalupoom, N. Vaneesorn, and A. Thanaboonsombut, “Dielectric and Ferroelectric Properties of Ba(ZrxTi1-x)O3 Ceramics”, Ceram. Int., vol. 34, p. 779, 2008.
    [12] I. Kymissis, “Organic Field Effect Transistors Theory, Fabrication and Characterization,” Springer Science+Business Media, 2009.
    [13] C. Wӧll, “Physical and Chemical Aspects of Organic Electrics,” WILEY-VDH Verlag GmbH & KGaA, 2009.
    [14] S.-H. Wen, A. Li, J. Song, W.-Q. Deng, K.-L. Han, and W. A. Goddard III, “First-principles Investigation of Anisotropic Hole Mobilities in Organic Semiconductors,” J. Phys. Chem. B, vol. 113, pp. 8813–8819, 2009.
    [15] Z. Bao, and J. Locklin, “Organic Field-Effect Transistors,” Taylor & Francis Group, 2007.
    [16] H. L. Cheng, X. W. Liang, W. Y. Chou , Y. S. Mai, C. Y. Yang, L. R. Chang, and F. C. Tang, “Raman Spectroscopy Applied to Reveal Polycrystalline Grain Structures and Carrier Transport Properties of Organic Semiconductor Films: Application to Pentacene-Based Organic Transistors,” Org. Electron., pp. 289–298, 2008.
    [17] H. Yamane, S. Nagamatsu, H. Fukagawa, S. Kera, R. Friedlein, K. K. Okudaira, and N. Ueno, “Hole-vibration Coupling of the Highest Occupied State in Pentacene Thin Films,” Phys. Rev. B, vol. 72, pp. 153412–4, 2005.
    [18] A. Abe, et al., “Organic Electronics”, Springer-Verlag Berlin Heidelberg, 2010
    [19] H. L. Cheng, W. Y. Chou, C. W. Kuo, and F. C. Tang, “Electric Field-Induced Structural Changes in Pentacene-Based Organic Thin-Film Transistors Studied by in situ Micro-Raman Spectroscopy,” Appl. Phys. Lett., vol. 88, pp. 161918–3, 2006.
    [20] D. Gupta, M. Katiyar, and D. Gupta, “An Analysis of the Difference in Behavior of Top and Bottom Contact Organic Thin Film Transistors Using Device Simulation,” Org. Electron., vol. 10, pp. 775–784, Apr. 2009.
    [21] William S. Wong, Alberto Salleo, “Flexible Electronics: Materials and Applications,” Springer Science+Business Media, 2009.
    [22] W. Gu, W. Jin, B. Wei, J. Zhang, and J. Wang, “High-Performance Organic Field-Effect Transistors Based on Copper/Copper Sulphide Bilayer Source-Drain Electrodes”, Appl. Phys. Lett., vol. 97, p. 243303, 2010.
    [23] B. E. Deal, “Standardized Terminology for Oxide Charges Associated with Thermally Oxidized Silicon,” IEEE Trans. Electron Devices, vol. ED-27, p. 606, 1980.
    [24] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash Memory Cells-An Overview,” Proceedings of The IEEE, vol. 85, p.1248, 1997.
    [25] L. E. Alexander, X-Ray Diffraction Methods in Polymer Science, Wiley-Interscience, New York, p. 423, 1969.
    [26] S. M. Mukhopadhyay, and T. C. S. Chen, “Surface Chemical States of Barium Titanate: Influence of Sample Processing.” J. Mater. Res., vol. 10, pp. 1502–1507, 1995.
    [27] L.L. Jiang, X.G. Tang, S.J. Kuang, and H.F. Xiong, “Surface Chemical States of Barium Zirconate Titanate Thin Films Prepared by Chemical Solution Deposition,” Appl. Surf. Sci., vol. 255, p. 8913, 2009.
    [28] B. Demri, M. Hage-Ali, M. Moritz, J. L. Kahn, and D. Muster, “X-ray Photoemission Study of the Calcium/Titanium Dioxide Interface.” Appl. Surf. Sci., vol. 108, pp. 245–249, Apr. 1996.
    [29] E. K. Evangelou, N. Konofaos, X. Aslanoglous, S. Kennou, and C. B. Thomas, ”Characterization of BaTiO3 Thin Film on p-Si,” Mat. Sci. Semicon. Proc. vol. 4, p. 305, 2001.
    [30] Y.-C. Li, Y.-J. Lin, H.-J. Yeh, T.-C. Wen, L.-M. Huang, Y.-K. Chen, and Y.-H. Wang, “Ion-modulated Electrical Conduction in Polyaniline-Based Field-Effect Transistors.” Appl. Phys. Lett., vol. 92, p. 093508, Mar. 2008.
    [31] W. Wang, G. Dong, L. Wang, and Y. Qiu, ”Pentacene Thin-Film Transistors with Sol-Gel Derived Amorphous Ba0.6Sr0.4TiO3 Gate Dielectric,” Microelectron. Eng., vol. 85, p. 414, 2007.
    [32] T. Cahyadi, J. N. Tey, S. G. Mhaisalkar, F. Boey, V. R. Rao, R. Lal, Z. H. Huang, G. J. Qi, Z. K. Chen, and C. M. Ng, “Investigations of Enhanced Device Characteristics in Pentacene-Based Field Effect Transistors with Sol-Gel Interfacial Layer,” Appl. Phys. Lett., vol. 90, p. 122115, 2007.
    [33] Y. Hosoi, D. M. Deyra, K. Nakajima, and Y. Furukawa, “Micro-Raman Spectroscopy on Pentacene Thin Film Transistors,” Mol. Cryst. Liq. Cryst. vol. 491, p. 317, 2008.
    [34] R. He, I. Dujovne, L. Chen, Q. Miao, C. F. Hirjibehedin, A. Pinczuk, C. Nuckolls, C. Kloc, and A. Ron, “Resonant Raman Scattering in Nanoscale Pentacene Films,” Appl. Phys. Lett. vol. 84, p. 987, 2004.
    [35] T. Jentzsch, H. J. Juepner, K. W. Brzezinka, and A. Lau, “Efficiency of Optical Second Harmonic Generation from Pentacene Films of Different Morphology and Structure,” Thin Solid Films. vol. 315, p. 273, 1997.
    [36] H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang and X. W. Liang, “Thickness-Dependent Structural Evolutions and Growth Models in Relation to Carrier Transport Properties in Polycrystalline Pentacene Thin Film,” Adv. Funct. Mater. vol. 17, pp. 3639, 2007.
    [37] M. Kytka, L. Gisslen, A. Gerlach, U. Heinemeyer, J. Kováč, R. Scholz, and F. Schreiber, ”Optical Spectra Obtained from Amorphous Films of Rubrene: Evidence for Predominance of Twisted Isomer,” J. Chem. Phys., vol. 130, pp. 214507–6, 2009.
    [38] S. Guha , J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H.R. Chandrasekhar, R. Guentner, P. Scandiucci de Freitas and U. Scherf, “Temperature Dependent Photoluminescence of Organic Semiconductors with Varying Backbone Conformation,” Phys. Rev. B., vol. 67, pp. 125204–7, 2003.
    [39] K. J. Baeg, Y. Y. Noh, J. Chim, S. J. Kang, H. Lee, and D. Y. Kim, “Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret,” Adv. Mater., vol. 18, pp. 3179–3183, 2006.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE