簡易檢索 / 詳目顯示

研究生: 陳姍玗
Chen, Shan-yu
論文名稱: 生物界面活性劑-鼠李糖酯之醱酵策略開發
Development of fermentation strategy for rhamnolipid production
指導教授: 張嘉修
Chang, Jo-shu
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 186
中文關鍵詞: 饋料培養pH-stat16S rDNA生物界面活性劑菌種篩選fill-and-draw鼠李糖酯綠膿桿菌培養基最適化回應曲面實驗設計法
外文關鍵詞: fed-batch culture, fill-and-draw operation, medium optimization, biosurfactant, 16S rDNA, pH-stat, Pseudomonas aeruginosa, strain isolation, rhamnolipid, response surface methodology
相關次數: 點閱:144下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先由受到柴油污染之土壤所篩選出具有生產具表面活性物質之本土菌株S2,該菌株所生產之生物界面活性劑不僅可大幅降低水的表面張力,並對於煤油及柴油具有優異之乳化能力。利用16S rRNA基因序列比對方式鑑定該菌種屬於Pseudomonas aeruginosa菌種,並將該菌株稱為P. aeruginosa S2。該菌株之16S rDNA部分基因序列已上傳至NCBI基因庫中,其登錄編號(accession number)為EF151192。由本土菌株P. aeruginosa S2生產出來的胞外生物界面活性劑經質譜儀鑑定乃屬於醣脂類生物界面活性劑-鼠李糖酯(rhamnolipid)。將所生產的鼠李糖酯經純化後可使水的表面張力由72降低至29.4 mN/m,對煤油之乳化指數E24(%)也可達73.5%,其臨界微胞濃度(CMC)約為170 mg/l 。
    為了增進P. aeruginosa S2之鼠李糖酯(RL)產量,本研究先以不同的碳源及氮源進行探討,尋求較適合該菌株之生物界面活性劑生產的碳源及氮源,由實驗結果發現4%葡萄糖及50 mM之硝酸氨對於鼠李糖酯的產量有較佳的表現,另外,也針對了碳氮源的比例進行研究,其結果顯示最佳的碳氮源比例為11:4 。此外本研究引入反應曲面(response surface)實驗設計法的概念,進行該菌株生產RL培養基之微量金屬濃度最適化,首先以二水準設計法(two-level design) 將培養基中影響較小的生產界面活性劑因子排除,接著再以陡升法(method of path of steepest ascent) 尋找出下一階段的實驗設計之培養基組成範圍中心點,最後以回應曲面法找出最佳的培養基組成。由實驗結果發現,Mg2+及Fe2+對於RL之生產是不可或缺的因子,而利用實驗設計法所得之最適化培養基於37 oC、200 rpm 之條件下培養7天可獲得2.37 g/l之rhamnolipid。
    由於生物界面活性劑的產量低與成本高,使得生物界面活性劑無法被廣泛的應用,因此亟需發展一套效率高與成本低之rhamnolipid醱酵生產技術,以提昇生物界面活性劑之產業競爭力。本研究以水溶性基質glucose為主要碳源,並以5 L醱酵槽進行RL之生產。首先,利用批次實驗進行最佳醱酵條件之研究,由實驗結果發現,醱酵之溫度、轉速、pH以及消泡劑種類均會影響RL之產量,其最佳醱酵槽之操作條件為:37oC、250 rpm、pH 6.8,以此條件進行醱酵可獲得RL的最高產量為5.31 g/l,此產量較佳於搖瓶實驗的兩倍。接著本研究以pH-stat的饋料策略進行醱酵,以達促進RL產量之目的。由實驗結果顯示以6% glucose為饋料基質,可使RL之產量提昇至6.06 g/l,其生產速率可達172.5 mg/h/l。此外為了更有效率的進行RL之生產,本研究結合pH-stat及fill-and-draw之饋料策略進行RL之量產測試,其結果顯示,除了可持續醱酵生產RL達500 h外,並可於第二個饋料週期將RL之產量提昇至9.4 g/l。此研究結果證實pH-stat醱酵策略確可提昇RL之濃度,並有助於增加該生物界面活性劑商品化之競爭力。

    Pseudomonas aeruginosa S2 was isolated from a diesel-contaminated soil site located in southern Taiwan. The strain was selected for its ability to produce extracellular products able to reduce surface tension and emulsify diesel and kerosene. The S2 strain was identified by comparing its 16S rDNA sequence with those available in NCBI gene bank. The accession number is EF151192. The extracellular surface active agent produced by the indigenous strain P. aeruginosa S2 was identified as rhamnolipid, which is one of the most commonly used biosurfactants with the ability to reduce surface tension of water from 72 to 29.4 mN/m and excellent emulsification index (E24) of 73.5 %. Meanwhile, the critical micelle concentration of the rhamnolipid product was 170 mg/l.
    To improve production yield of rhamnolipid with P. aeruginosa S2, various carbon and nitrogen sources were screened to select favorable ones leading to better biosurfactant production yield. It was found that using 4% glucose could attain better rhamnolipid yield, while 50 mM NH4NO3 appeared to be the most preferable nitrogen source. Meanwhile, the effect of carbon to nitrogen ratio (C/N ratio) on rhamnolipid yield was also investigated and the optimal C/N ratio was identified as approximately 11.4. Moreover, response surface methodology (RSM) was applied to optimize the trace element concentration for rhamnolipid production. Results from two-level design indicate that concentrations of MgSO4 and FeSO4 were the most significant factors affecting rhamnolipid production. Using steepest ascent method and RSM analysis, an optimal medium composition was determined, giving a rhamnolipid production yield of 2.37 g/l in 100 h at 37oC and 200 rpm agitation.
    Rhamnolipid production was also performed in a well-controlled 5 liter laboratory-scale jar fermentor. The effect of pH, temperature, antifoaming strategy, and agitation rate on rhamnolipid production was investigated. Using the optimal medium and operating condition (at 37 oC, pH 6.8 and 250 rpm agitation) further elevated the biosurfactant production yield to 5.31 g/l (in 97 h), which is over 2 fold higher than the best results obtained from shake-flask tests. To further improve the rhamnolipid yield, a pH-stat fed-batch culture was performed by maintaining a constant pH of 6.8 through manipulating glucose feeding. The effect of influent glucose concentration on rhamnolipid yield and productivity was investigated. Using the pH-stat culture, a maximum rhamnolipid concentration (6.06 g/l) and production rate (172.5 mg/h/l) was obtained with 6% glucose in the feed. Moreover, combining pH-stat culture with fill-and-draw operation allowed a stable repeated fed-batch operation for ca. 500 h. A marked increase in rhamnolipid production was achieved, leading to the highest rhamnolipid concentration of ca. 9.4 g/l during the second repeated run.

    Contents Abstract (Chinese) I Abstract (English) V Acknowledgement VII Contents IX List of tables XVI List of figures XIX Notations XXIV Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and purpose 4 1.3 Construction of Dissertation 5 Chapter 2 Literature review 9 2.1 Surfactants 10 2.2 Biosurfactants 14 2.3 Rhamnolipid 23 2.3.1 Chemical structure of rhamnolipid 23 2.3.2 Genetics of rhamnolipid synthesis 25 2.3.3 Biosynthesis of rhamnolipid 27 2.3.4 Physicochemical properties of rhamnolipid 29 2.3.5 Rhamnolipid production 30 2.3.6 Purification of rhamnolipid 37 2.3.7 Applications of rhamnolipid 37 2.4 Fed-batch fermentation strategy 39 2.5 Identification of bacteria 44 2.6 Introduction of statistical experimental design………………...…. 47 2.6.1 The 2k factorial design 48 2.6.2 The method of steepest ascent 50 2.6.3 Response surface methodology 51 Chapter 3 Materials and Methods 55 3.1 Chemicals and materials 55 3.2 Equipment 58 3.3 Isolation of identification of rhamnolipid producing microorganisms 61 3.3.1 Strain isolation 61 3.3.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 62 3.3.3 Amplified 16S rDNA 65 3.3.4 Analysis of 16S rDNA sequence 65 3.4 Flask experiments 68 3.4.1 Microorganisms and cultivation 68 3.4.2 Culture medium for rhamnolipid production 68 3.4.3 Carbon sources and nitrogen sources for rhamnolipid production 69 3.4.4 Trace element for rhamnolipid production 69 3.5 Statistical experimental design 70 3.5.1 Two-level factorial design 70 3.5.2 Response surface methodology 70 3.6 Fermentor experiments 75 3.6.1 Batch culture 75 3.6.2 pH-stat fed-batch culture 76 3.6.3 Constant feeding fed-batch culture 77 3.6.4 Combined pH-stat and fill-and-draw process 77 3.7 Analytical methods and rhamnolipid purification 78 3.7.1 Emulsification test 78 3.7.2 Measurements of surface tension 78 3.7.3 Determination of cell concentration 79 3.7.4 Determination of dry cell weight (DCW) 79 3.7.5 Measurement of glucose concentration 80 3.7.6 Quantification of rhamnolipid 81 3.7.7 Estimation of NH3-N concentration 83 3.7.8 Isolation and purification of rhamnolipid 84 3.7.9 Characterization of purified rhamnolipid product 84 3.8 Transient data analysis 85 Chapter 4 Isolation and Identification of Rhamnolipid Producing Bacterial Strain 87 4.1 Introduction 87 4.2 Isolation of rhamnolipid-producing bacterial strain 87 4.3 Identification of biosurfactant-producing bacterium 90 4.4 Rhamnolipid production of Pseudomonas sp. isolates 92 4.5 Identification of rhamnolipid-producing Pseudomonas sp. S2 94 Chapter 5 Characterization of Rhamnolipid Product Produced by Pseudomonas aeruginosa S2 97 5.1 Introduction 97 5.2 Purification and identification of rhamnolipid 97 5.3 Surface tension reduction of purified rhamnolipid 101 5.4 Emulsification activity of the rhamnolipid product 103 5.5 Thermal stability of rhamnolipid 105 Chapter 6 Fermentation Medium for Rhamnolipid Production 107 6.1 Introduction 107 6.2 Effect of carbon sources on rhamnolipid production 107 6.3 Effect of nitrogen sources on rhamnolipid production 110 6.4 Effect of carbon to nitrogen ratio on rhamnolipid production 112 6.5 Effect of trace element on rhamnolipid production 114 6.6 Optimization of biosurfactants production by response surface methodology 120 Chapter 7 Exploring Fermentor Operation Conditions for Rhamnolipid Production 123 7.1 Introduction 123 7.2 Effect of antifoam agent on rhamnolipid production 123 7.3 Batch rhamnolipid fermentation without pH control 126 7.4 Effect of pH on rhamnolipid production 128 7.5 Effect of temperature on rhamnolipid production 130 7.6 Effect of agitation rate on rhamnolipid 132 7.7 Rhamnolipid production using predetermined favorable conditions 134 7.8 The effect of alkaline pH on rhamnolipid production 136 7.9 Rhamnolipid production using repeated batch fermentation 138 Chapter 8 Rhamnolipid Production with Fed-Batch Fermentation 141 8.1 Introduction 141 8.2 Rhamnolipipd production by fed-batch operation with the addition of glucose alone 142 8.3 Effect of initial glucose concentration on rhamnolipid production using pH-stat fed-batch fermentation 145 8.4 Effect of feeding glucose concentration on rhamnolipid production using pH-stat fed-batch fermentation 147 8.5 Rhamnolipid production with constant feeding fed-batch fermentation 148 8.6 Rhamnolipid production with combined pH-stat and fill-and-draw operation 153 Chapter 9 Conclusions 159 Chapter 10 Prospects and future work 163 References 165 Appendix Curriculum vitae і List of Tables Table 2.1 Biosurfactants produced by the microorganisms 21 Table 2.1 Comparison of the microbial production of rhamnolipids by Pseudomonas sp. 34 Table 2.3 The design matrix 50 Table 3.1 Soil characteristic and properties 63 Table 3.2 The composition of BH medium 63 Table 3.3 The composition of NB medium 63 Table 3.4 The composition of LB( Luria-Bertani broth) medium 64 Table 3.5 SDS-PAGE composition 64 Table 3.6 PCR component 66 Table 3.7 Cycling parametars for PCR 67 Table 3.8 The composition of 5X TBE Buffer 67 Table 3.9 The composition of MSI medium 67 Table 3.10 The composition of modified MSI medium 68 Table 3.11 Two-level factorial design for rhamnolipid production by P. aeruginosa S2 72 Table 3.12 The method of steepest ascent for rhamnolipid production by P. aeruginosa S2 73 Table 3.13 Experimental design according to response surface methodology (RSM) for rhamnolipid production by P. aeruginosa S2 74 Table 4.1 Surface activity and emulsification activity of selection strains 89 Table 5.1 Comparison of surface activity of rhamnolipid with and without autoclave treatment 106 Table 6.1 Two-level factorial design for rhamnolipid production by P. aeruginosa S2 117 Table 6.2 Experimental design according to response surface methodology (RSM) for rhamnolipid production by P. aeruginosa S2 121 Table 7.1 Effect of pH on rhamnolipid production with P. aeruginosa S2 in batch ferementor. (37oC, 250 rpm agitation) 129 Table 7.2 Effect of temperature on rhamnolipid production with P. aeruginosa S2 in batch fermentor. (pH 6.8, 250 rpm agitation) 131 Table 7.3 Effect of agitation rate on rhamnolipid production with P. aeruginosa S2 in batch fermentor 133 Table 8.1 Performance of rhamnolipid production with fed-batch fermentation using pH-stat and constant feeding strategies (37oC, pH 6.8, 250 rpm agitation) 151 List of Figures Figure 1.1 The fish bone chart describing the research scope of this study 6 Figure 2.1 Relationship between surfactant concentration, critical micelle concentration and surface activity 14 Figure 2.2 Sophorolipid lipid (lactonic form) from Torulopsis magnoliae. 16 Figure 2.3 Rhamnolipids from Pseudomonas aeruginosa 17 Figure 2.4 Surfactin from Bacillus subtilis 17 Figure 2.5 Lichenysin from Bacillus licheniformis 17 Figure 2.6 Biosurfactant produced by Corynebacterium lepus 18 Figure 2.7 Emulsan from Acinetobacter calcoaceticus 18 Figure 2.8 Genes involved in the synthesis and regulation of rhamnolipid in P. aeruginosa. 27 Figure 2.9 Biosynthesis of rhamnolipids R1 and R2 from P. aeruginosa 28 Figure 2.10 An example of conventional drawing of a phylogenetic tree (a phenogram) 47 Figure 2.11 The 23 factorial design 49 Figure 2.12 The central composite designs for p = 3 factors 53 Figure 3.1 A 5 L well-controlled fermentor 76 Figure 3.2 Calibration curve of dry cell weight of P. aeruginosa S2 80 Figure 3.3 Calibration curve of glucose concentration 81 Figure 3.4 Calibration curve of L-rhamnose concentration 82 Figure 3.5 Calibration coefficient between rhamnolipid and rhamnose 83 Figure 4.1 SDS-PAGE analysis of the supernatant after sonication with S-series isolates 91 Figure 4.2 Rhamnolipid production of different Pseudomonas species (i.e., strains S2, F72, and J16) 93 Figure 4.3 The dendrogram phylogenic tree of strain S2 95 Figure 4.4 Partial 16S rDNA gene sequence (1455 bp) of P. aeruginosa S2……… 96 Figure 5.1 Mass spectrometry spectrograms of rhamnolipid purified from batch cultures of P. aeruginosa S2 99 Figure 5.2 HPLC of rhamnolipid purified from batch cultures of P. aeruginosa S2 100 Figure 5.3 Surface tension reduction profile with purified rhamnolipid from P. aeruginosa S2 102 Figure 5.4 Emulsification index profile (for kerosene) with purified rhamnolipid from P. aeruginosa S2 104 Figure 6.1 Effect of carbon source on rhamnolipid production by P. aeruginosa S2 109 Figure 6.2 Effect of nitrogen source on rhamnolipid production by P. aeruginosa S2 111 Figure 6.3 Effect of carbon to nitrogen ratio on rhamnolipid production by P. aeruginosa S2.. 113 Figure 6.4 Effect of teace element on MSI medium for rhamnolipid production by P. aeruginosa S2 116 Figure 6.5 Two-level factorial design for rhamnolipid production by P. aeruginosa S2 118 Figure 6.6 Method of path of steepest ascent analysis for rhamnolipid production by P. aeruginosa S2 119 Figure 6.7 Response surface analysis of Mg2+ and Fe2+ concentrations on rhamnolipid production by P. aeruginosa S2 122 Figure 7.1 Time-course profile of cell growth, pH and rhamnolipid production during batch fermentation with P. aeruginosa S2 with antifoam 204 125 Figure 7.2 Time-course profile of cell growth, pH and rhamnolipid production during batch fermentation with P. aeruginosa S2 on MSI medium containing 4% glucose 127 Figure 7.3 Time-course profile of cell growth, glucose consumption and rhamnolipid production during batch fermentation with P. aeruginosa S2 on MSI medium containing 4% glucose. (Operation conditions: pH 6.8, 250 rpm and 37oC) 135 Figure 7.4 Time-course profile of cell growth, pH and rhamnolipid production with P. aeruginosa S2 under a pH control strategy, in which culture pH was initially controlled at 6.8 but was not controlled when pH increased to above 6.8 137 Figure 7.5 Repeated batch fermentation for rhamnolipid production with P. aeruginosa S2. The dotted line represents the feeding time of second run 139 Figure 8.1 Time-course profiles of cell growth, and rhamnolipid production during rhamnolipipd fermentation by addition of glucose of P. aeruginosa S2. The dotted line represents the onset of fed-batch feeding 144 Figure 8.2 Effect of initial glucose concentration with pH-stat fed-batch fermentation for rhamnolipid production 146 Figure 8.3 Performance of rhamnolipid production with fed-batch fermentation using pH-stat feeding strategies. (37oC, pH 6.8, 250 rpm agitation) 150 Figure 8.4 Fed-batch fermentation using constant feeding and pH-stat feeding strategies with P. aeruginosa S2. for rhamnolipid production 152 Figure 8.5 Combined pH-stat fed-batch and fill-draw operation for rhamnolipid production with P. aeruginosa S2 using 6% glucose alone in the feed 157 Figure 8.6 Combined pH-stat fed-batch and fill-draw operation for rhamnolipid production with P. aeruginosa S2. (a) Profiles of cell concentration and rhamnolipid production (b) profiles of glucose consumption and NH4+ concentration. (Feeding medium: MSI medium amended with 6% glucose) 158

    Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 17: 1367-1371
    Abdel-Fattah YR, Saeed HM, Gohar YM, El-Baz MA (2005) Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochem. 40: 1707-1714
    Abu-Ruwaida AS, Banat IM, Haditirto S Khamis A (1991) Nutritional requirements and growth characteristics of a biosurfactant-producing Rhodococcus bacterium. World J. Microbiol. Biotechnol. 7: 53-61
    Åkesseon M, Hagander P, Axelesson JP (1999) A probing feeding strategy for Escherichia coli cultures. Biotechnol. Tech. 13: 523- 528
    Amézcua-Vega C, Poggi-Varaldo HM, Esparza-García F, Ríos-Leal E, Rodríguez-Vázquez R (2007) Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresource Technol. 98: 237-240
    Arino S, Marchal R, Vandecasteele J-P (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl. Microbiol. Biotechnol. 45:162-168
    Ash M, Ash I (1993) Handbook of industrial surfactant. VT: Gower Publishing Company
    Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiological Reviews. 45: 180-209
    Attwood D, Florence AT (1983) Surfactant systems: Their chemistry, pharmacy and biology. Chapman and Hall. New York. 1-39
    Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. New York. McGraw-Hill
    Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour. Technol. 51: 1-12
    Banat I.M, Makkar RS, Cameotra SS (2000) Potential applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53: 495-508
    Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J. Appl. Microbiol. 89: 158-168
    Becher P (1965) Emulsions, Theory and Practice. second ed. Reinhold Publishing. New York. 1-15
    Benincasa M, Contiero J, Manresa MA, Moraes IO (2002) Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food Eng. 54: 283-288
    Bergeström S, Theorell H, Davide H (1946) On a metabolic product of Ps. pyocyanea, pyolipic acid, active against Myobact. tuberculosis. Ark. Kem. Mineral. Geol. 23A: 1-12
    Biermann M, Lange F, Piorr R, Ploog U, Rutzen H, Schindler J, Schmidt R (1987) In: Falbe, J. (Ed.), Surfactants in Consumer Products, Theory, Technology and Application. Springer-Verlag. Heidelberg. 1-10
    Boothroyd B, Thorn JA, Haskins RH (1956) Biochemistry of the ustilaginales. Characterization of extracellular glycolipids produced by Ustilago sp. Can. J. Biochem. Physiol. 34: 10-14
    Boškovic JD, Narendra KS (1995) Comparison of linear, nonlinear and neural-network-based adaptive controllers for a class of fed-batch fermentation process. Automatica. 31: 817- 840
    Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society Series B. 13: 1-45
    Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature. 368: 413-418
    Bunster L, Fokkema NJ, Schippers B (1989) Effect of surface active Pseudomonas spp. on leaf wettability. Appl. Environ. Microbiol. 55: 1340-1345
    Burger MM, Glaser L, Burton RM (1963) The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. J. Biol. Chem. 238: 2595-2601
    Cameotra SS, Makkar RS (1998) Synthesis of biosurfactant in extreme conditions. Appl. Mirobiol. Biotechnol. 50: 520-529
    Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr. Opin. Microbiol. 7: 262-266
    Chang JS, Chao YP, Law WS (1998) Repeated fed-batch operations for microbial detoxification of mercury using wild-type and recombinant mercury-resistant bacteria. J. Biotechnol. 64: 219-230
    Chayabutra C, Wu J, Ju LK (2001) Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotechnol. Bioeng. 72: 25-33
    Chen CY, Baker SC, Darton RC (2006) Batch production of biosurfactant with foam fractionation. J. Chem. Technol. Biotechnol. 81: 1923-1931
    Chen CY, Chang JS (2006a) Feasibility strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical-fiber-assisted illumination systems. Int. J. Hydrogen Energy. 31: 2345-2355
    Chung YC, Chien IL,Chang DM (2006) Multiple-model control strategy for a fed-batch high cell-density culture processing. J. Process Control. 16: 9-26
    Clarridge III JE (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious disease. Clin. Microbiol. Rev. 17: 840- 862
    Cohen BL, Sheps JA, Wilkinson M (1998) Archiving molecular phylogenetic alignments as NEXUS files. Syst. Biol. 47: 495-496
    Cooper DG (1986) Biosurfactant. Mirobiological Sciences. 3: 145-149
    Cooper DG, Goldenberg BG. (1987) Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 53: 224-229
    Cooper DG, MacDonald CR, Duff JB, Kosaric N (1981) Enhanced production of surfactant from Bacillus subtilis by continuous product removal and metal cation addition. Appl. Environ. Microbiol. 42: 408-412
    Cooper DG, Paddock DA (1984) Production of a biosurfactant from Torulopsis bombiccola. Appl. Environ. Micrboiol. 47: 173-176
    Costerton JW, Nickel JC, Ladd TI (1986) Suitable methods for the comparative study of free-living and surfactant-associated bacterial populations. In: Poindexter JS, Leadbetter ER, editors. Bacteria in nature. 2: New York: Plenum Press
    Cutayar JM, Poillon D (1989) High cell density culture of E. coli in a fed-batch system with dissolved oxygen as substrate feed indicator. Biotechnol. Lett. 11: 155-160
    Davis DA, Lynch HC, Varley J (2001) The application of foaming for the recovery of Surfactin from B. subtilis ATCC 21332 cultures. Enzyme Microb. Technol. 28: 346-354
    Davis DA, Lynch HC, Varley J (1999) The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microb. Technol. 25: 322-329
    Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol. Mol. Rev. 61: 47-64
    Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim. Biophys. Acta. 1440: 244-252
    Déziel É, Paquette G, Villemur R, Lépine F, Bisaillon J-G (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 62: 1908-1912
    Dramcourt M, Bollet C, Carlloz A, Martelin R, Gayral JP, Rraoult D (2003) Usefulness of the MicroSeq 500 16S Ribosomal DNA-Based Bacterial Identification System for Identification of Clinically Significant Bacterial Isolates with Ambiguous Biochemical Profiles. J. Clin. Microbiol. 41: 1996- 2001
    Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, Raoult D (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol. 38: 3623-30
    Drouin CM, Cooper DG (1992) Biosurfactants and aqueous two-phase fermentation. Biotechnol. Bioeng. 40: 86-90
    Duan S, Shi Z, Feng H, Duan Z, Mao Z (2006) An on-line adaptive control based on DO/pH measurements and ANN pattern recognition model for fed-batch cultivation. Biochem. Eng. J. 30: 88-96
    Dubey K, Juwarkar A (2004) Determination of genetic basis for biosurfactant production in distillery and curd whey wastes utilizing Pseudomonas aeruginosa strain BS2. Indian. J. Biotechnol. 3: 74-81
    Dwyer T, Schreiber F (2004) Optimal Leaf Ordering for Two and a Half Dimensional Phylogenetic Tree Visualisation. ACM International Conference Proceeding Series. 99: 109-115
    Edward JR, Cooney JJ (1969) Lipids of Pseudomonas aeruginosa cells grown on hydrocarbons and on trypticase soybean broth. J. Bacteriol. 98: 16-22
    Edward JR, Hayashi JA (1965) Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch. Biochem. Biophys. 111: 415-421
    Fiechter A (1992) Biosurfactants: moving towards industrial application. Trends Biotechnol. 10: 208-217
    Fredricks DN, Relman DA (1996) Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin. Microbiol. Rev. 9: 18-33
    García-Arrazola R, Sun Chau Siu, Gerard Chan, Ian Buchanan, Billy Doyle, Nigel Titchener-Hooker, Frank Baganz (2005) Evaluation of a pH-stat feeding strategy on the production and recovery of Fab’ fragments from E. coli. Biochem. Eng. J. 23: 221- 230
    Gauduchon V, Chalabreysse L, Etienne J, Celard M, Benito Y, Lepidi H, Thivolet-Bejui F, Vandenesch F (2003) Molecular diagnosis of infective endocarditis by PCR amplification and direct sequencing of DNA from valve tissue. J. Clin. Microbiol. 41: 763-766
    Georgiou G, Lin S, Sharma MM (1992) Surface active compounds from microorganisms. Bio/Tech.10: 60-65
    Gruber T, Chmiel H, Käppeli O, Sticher P, Fiechter A (1993) Integrated process for continuous rhamnolipid biosynthesis. Kosaric N (ed) Biosurfactants: production, properties, applications. Marcel Dekker, Inc. New York. 48: 157-173
    Guerra-Santos LH, Käppeli O, Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ. Microbiol. 48: 301-305
    Guerra-Santos LH, Käppeli O, Fiechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol. 24: 443-448
    Gunther Nw, Nunez A, Fett W (2005) Solaiman, D. K. Y. Production of rhamnolipids by Pseudomonas chloroaphis, a nonpathogenic bacterium. Appl. Environ. Microbiol.71: 2288-2293
    Gutnik DL, Shabtai Y (1987) Exopolysaccharide biomulsifier. In: Kosaric N, Cairns WL, Gray NCC, editors. Biosurfactants and Biotechnology. Dekker. New York. 211-46
    Haferburg D, Hommel R, Claus R, Kleber H (1986) Extracellular microbial lipids as biosurfactants. Adv. Biochem. Engng/Biotech. 33: 53-93
    Harvey S, Elashvili I, Valdes JJ, Kamely D, Chakrabarty AM (1990) Enhanced removal of Exxon Valdes spilled oil from Alaskan gravel by a microbial surfactant. Biotechnology. 8: 228-230
    Hauser G, Karnovsky ML (1957) Rhamnose and rhamnolipid biosynthesis by Pseudomonas aeruginosa. J. Biol. Chem. 224: 91-105
    Healy MG, Devine CM, Murphy R (1996) Microbial production of biosurfactants. Resources. Conservation and Recycling. 18: 41-57
    Herman DC, Artiola JF, Miller RM (1995) Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environ. Sci. Technol. 29: 2280-2285
    Hekmat D, Bauer R , Neff V (2007) Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Proc. Biochem. 42: 71-76
    Hester A (2001) IB Market forecast. Ind. Bioprocess. 23: 3
    Hisatsuka K, Nakahara T, Sano N, Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa: its function in hydrocarbon fermentations. Agric. Biol. Chem. 35: 686-692
    Hisatsuka K, Nakahara, Yamada K (1982) Novel rhamnolipids from Pseudomonas aeruginosa. FEBS Lett. 139: 81-85
    Hommel RK, Huse K (1993) Regulation of sophorose lipid production by Candida (Torulopsis) apicola. Biotechnol. Lett. 15: 853-858
    Honda H, Kobayashi T (2000) Fuzzy control of bioprocess. J. Biosci. Bioeng. 89: 401- 408
    Itoh S, Honda H, Tomita F, Suzuki T (1971) Rhamnolipid produced by Pseudomonas aeruginosa grown on n-paraffin. J. Antibiot. 24: 855-859
    Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin utilizing ability. Agric. Biol. Chem. 36: 2233-2235
    Jarvis FG, Johnson MJ (1949) A glycolipipd produced by Pseudomonas aeruginosa. J. Am. Chem. Soc. 71: 4124-4126
    Jeong HS, Lim DJ, Hwang SH, Ha SD, Kong JY (2004) Rhamnolipid production by Pseudomonas aeruginosa immobilized in polyvinyl alcohol beads. Biotechnol. Lett. 26: 35-39
    Johnston WA, Stewart M, Lee P, Cooney MJ (2003) Tracking the acetate threshold using DO-transient control during medium and high cell density cultivation of recombinant Escherichia coli in complex media. Biotechnol. Bioeng. 84: 314-323
    Johnston W, Cord-Ruwisch R, Cooney MJ (2002) Industrial control of recombinant E. coli fed-batch culture: new perspectives on traditional controlled variables. Bioproc. Biosyst. Eng. 25: 111-120
    Karnovsky FG, Johnson MJ (1949) A glycolipipd produced by Pseudomonas aeruginosa. J. Am. Chem. Soc. 71: 4124-4126
    Kim BS, Lee SC, Lee SY (1994) Production of poly (3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol. Bioeng. 43: 892- 898
    Kim EJ, Sabra W, Zeng AP (2003) Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1. Microbiology. 149: 2627-2634
    Kim HS, Jeon JW, Kim B, Ahn CY, Oh HM, Yoon BD (2006) Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Appl. Microbiol. Biotechnol. 70: 391-396
    Kim HS, Yoon BD, Choung DH, Oh HM, Katsuragi T, Tani Y (1999) Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp. SY 16. Appl. Microbiol. Biotechnol.52: 713-721
    Kingston PF (2002) Long term environmental impact of oil spills. Spill Sci. Technol. Bull. 7: 53-61
    Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants from energy-saving materials to gene delivery carriers J. Biosci. Bioeng. 94: 187-201
    Köhler T, Curty LK, Barja F, Van Delden C, Pechére JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol. 182: 5990-5996
    Korz DJ, Rinas U, Hellmuth K, Sanders EA, Deckwer W-D (1995) Simple fed-batch technique for high cell density cultivation of Escherichia coli. J. Biotechnol. 39: 59- 65
    Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and Characterization of Surfactin Isoforms Produced by Bacillus subtilis OKB 105. J. Colloid Interface Sci. 204: 1-8
    Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr. Opin. Colloid Interface Sci. 7: 12-20
    Lang S, Wagner F (1987) Structure and properties of biosurfactant, In N. Kosaric, W. L. Cairns, and N. C. C. Gray (ed.). Biosurfactant and biotechnology. Marcel Dekker, Inc. New York. 21-47
    Lang S, Wullbrandt D (1999) Rhamnose lipids-biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 51: 22-32
    Lee CY, Nakano A, Shiomi N, Lee EK, Katoh S (2003) Effects of substrate feed rates on heterologous protein expression by Pichia pastoris in DO-stat fed-batch fermentation. Enzyme Microb. Technol. 33: 358-365
    Lee SY (1996) High cell-density culture of Escherichia coli, Trends Biotechnol. 14: 98- 105
    Lee Y, Lee SY, Yang JW (1999) Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source. Biosci. Biotechnol. Biochem. 63: 946-947
    Lee J, Lee SY, Park S, Middelberg APJ (1999a) Control of fed-batch fermentations. Biotechnol. Adv. 17: 29-48
    Lee Y, Lee SY, Yang JW (1999b) Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source. Biosci. Biotechnol. Biochem. 63: 946-947
    Lin SC (1996) Biosurfactant: recent advances. J. Chem. Technol. Biotechnol. 63: 109-120
    Lin SC, Carswell KS, Sharma MM, Georgiou G (1994) Continuous production of the lipopeptide biosurfactant of Bacillus licheniformis JF-2. Appl. Microbiol. Biotechnol. 41: 281-285
    Linhardt RJ, Bakhit R, Daniels L, Mayerl F (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol. Bioeng. 33: 365-368
    Lu JJ, Perng CL, Lee SY, Wan CC (2000) Use of PCR with universal primers and restriction endonuclease digestions for detection and identification of common bacterial pathogens in cerebrospinal fluid. J. Clin. Microbiol. 38: 2076-2080
    Luli GW, Schlasner SM, Ordaz DE, Mason M, Strohl WR (1987) An automatic on-line glucose analyzer for feed-back control of fed-batch growth of Escherichia coli. Biotechnol. Lett. 1: 225-230
    MacElwee CG, Lee H, Trevors JT (1990) Production of extracel- lular emulsifying agent by Pseudomonas aeruginosa UG1. J. Ind. Microbiol. 5: 25-32
    Maier RM, Chavez GS (2000) Pseudomonas aerugionsa rhamnolipids: biosynthesis and potential applications. Appl. Microbiol. Biotechnol. 54: 625-633
    Makkar RS, Cameotra SS (2002) An update on use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol. 58: 428-434
    Manreas M A, Bastida J, Mercadé ME, Robert M, de Andrés C, Espuny MJ, Guinea J (1991) Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1. J. Ind. Microbiol. 8: 133-136
    Marín M, Pedregosa A, Ríos S, Ortiz ML, Laborda F (1995) Biodegration of diesel and heating oil by Acinetobacter calcoaceticus MM5: its possible applications on bioremediation. Int. Biodeterior. Biodegrad. 269-285
    Maslin P, Maier RM (2000) Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal co-contaminated soils. Bioremed. J. 4: 295-308
    Mata-Sandoval JC, Karns J, Torrents A (1999) High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J. Chromatogr. A. 864: 211-220
    Matsufuji M, Nakata K, Yoshimoto A (1997) High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol. Biotechnol. Lett. 19: 1213-1215
    Menawat A, Mutharasan R, Coughanowr DR (1987) Singular optimal control strategy for a fed-batch bioreactor: numerical approach. AIChE J. 33: 776-783
    Mignard S, Flandrois JP (2006) 16S rRNA sequencing in routine bacterial identification: A 30-month experiment J. Microbiol. Methods. 67: 574- 581
    Miller RM (1995) Surfactant-enhanced bioavailability of slightly soluble organic compounds. In: Skipper HD, Turco RF (Eds) Bioremediation: Science and Applications. Science Society of America, Soil Madison WI: 322-354
    Modak JM, Lim HC (1992) Optimal mode of operation of bioreactor for fermentation process. Chem. Eng. Sci. 47: 3869-3884
    Montgomery DC (2001) Design and analysis of experiments. 5th edition. Wiley
    Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol. 24: 509-515
    Mulligan CN (2005) Environmental applications for biosurfactants. Environ. Pollut. 133: 183-198
    Mulligan CN, Gibbs BF (1989) Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 55: 3016-301
    Mulligan CN, Gibbs BF (1993) Factors influencing the economics of biosurfactants. In: Kosaric, N. (Ed.), Biosurfactants, Production, Properties, Applications. Marcel Dekker. New York. 329-371
    Nilsson A, Taherzadeh MJ, Lidén G (2004) Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol. J. Biotechnol. 89: 41-53
    Noordman WH, Ji W, Brusseau ML, Janssen DB (1998) Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil. Environ. Sci. Technol. 32: 1806-1812
    Nor ZM, Tamer MI, Scharer JM, Moo-Young M, Jervis EJ (2001) Automated fed-batch culture of Kluyveromyces fragilis based on a novel method for on-line estimation of cell specific growth rate. Biochem. Eng. J. 9: 221-31
    Oberbremer A, Muller-Hurtig R, Wagner FW (1990) Effect of the addition of microbial surfactant on hydrocarbon degradation in a soil population in a stirred reactor. Appl. Microbiol. Biotechnol. 32: 485-489
    Ochsner UA, Koch AK, Fiechter A, Reiser J (1994a) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J. Bacteriol. 176: 2044-2054
    Ochsner UA, Fiechter A, Reiser J (1994b) Isolation, characterization and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J. Biol. Chem. 269: 19787-19795
    Ochsner UA, Hembach T, Fiechter A (1996) Production of rhamnolipid biosurfactants. In: Fiechter A (ed) Advances in biochemical engineering biotechnology. vol 53. Springer. Berlin Heidelberg New York. 89-118
    Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92: 6424-6428
    Ochsener UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterogeneous host. Appl. Environ. Microbiol. 61: 3503-3506
    OConnor L (2002) Market forecast: microbial biosurfactants. Ind. Bioprocess. 24: 10-11
    Olsen GJ and Woese CR (1993). Ribosomal RNA: a key to phylogeny. FASEB J. 7: 113- 123
    Page RDM (1996) Treeview: an application to display phylogenetic trees onf personal computers. Comput. Alli. Biosce. 12: 357-358
    Palejwala S, Desai JD (1989) Production of an extracellular emulsifier by a Gram negative bacterium. Biotechnol. Lett. 11: 115-118
    Parra JL, Guinea J, Manresa MA, Robert M, Mercade ME, Comelles F, BoschMP (1989) Chemical characterization and physicochemical behaviour of biosurfactants. J. Am. Oil Chem. Soc. 66: 141-145
    Passeri A (1992) Marine biosurfactants: Ⅳ. Production, characterization and biosynthesis of an anionic glucose lipid from the marine bacterial strain MM1. Appl. Microbiol. Biotechnol. 37: 281-286
    Patnailk PR (2006) Dispersion optimization to enhance PHB production in fed-batch cultures of Ralstonia eutropha Bioresour. Technol. 97: 1994-2001
    Perfumo A, Banat IM, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl. Microbiol. Biotechnol. 72: 132-138
    Providenti MA, Flemming CA, Lee H, Trevors JT(1995) Effect of addition of rhamnolipid biosurfactants or rhamnolipid-producing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries. FEMS Microbiol. Ecol. 17: 15-26
    Ramana KV, Karanth NG (1989) Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J. Chem. Technol. Biotechnol. 45: 249-257
    Raoult D, Fournier P-E, Drancourt M (2004) What does the future hold for clinical microbiology. Nat. Rev. 2: 151- 159
    Rashedi H, Jamshidi E, Assadi MM, Bonakdarpour B (2006) Biosurfactant production with glucose a carbon source. Chem. Biochem. Eng. 20: 99-106
    Raza ZA, Rehman A, Khan MS, Khalid ZM (2007) Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes. Biodegradation. 18: 115-121
    Reiling HE, Thanei-Wss U, Guerra-Santos LH, Hirt R, Käppeli O, Fiechter A (1986) Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 51: 985-989
    Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R, Cole J (1990) Characterization of Pseudomonas rhamnolipids. Biochim. Biophys. Acta. 1045: 189-193
    Riesenberg D, Guthke R (1999) High-cell-density cultivation of microorganisms, Appl. Microbiol. Biotechnol. 51: 422-430
    Robert M, Mercade ME, Bosch MP, Parra JI, Espuny MJ, Manresa MA, Guinea J (1989) Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T. Biotechnol. Lett. 11: 871-874
    Ron EZ, Rosenberg E (2001) Natural roles of biosurfactant. Environ. Microbiol. 3: 229-236
    Rosen MJ, Goldsmith HA (1972) Systematic analysis of surface active agents. Second ed. Wiley. New York. 5-36
    Rosenberg E (1986) Microbial surfactants. Critical Reviews in Biotechnology. 3: 109-132
    Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactant. Appl. Mirobiol. Biotechnol. 52: 154-162
    Rossello-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol. Rev. 25: 39- 67
    Rothman RE, Majmudar MD, Kelen G.D, Madico G., Gaydos C A, Walker T, Quinn TC (2002) Detection of bacteremia in emergency department patients at risk for infective endocarditis using universal 16S rRNAprimers in a decontaminated polymerase chain reaction assay. J. Infect. Dis. 186: 1677-1681
    Sabra W, Kim EJ, Zeng AP (2002) Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiology. 148: 3195-3202
    Sandrin C, Peypoux F, Michel F (1990) Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnol. Appl. Biochem. 12: 370-375
    Sandrin TR, Chech AM, Maier RM (2000) A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Appl. Environ. Microbiol. 66: 4585-4588
    Santa Anna1 LM, Sebastian GV, Menezes EP, Alves TLM, Santos AS, Pereira JN, Freire DMG (2002) Production of biosurfactant from Pseudomonas aeruginosa PA1 isolated in soil environments. Braz. J. Chem. Eng.19: 159-166
    Sim L, Ward OP, Li Z-Y (1997) Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J. Ind. Microbiol. Biotechnol. 19: 232-238
    Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 68: 718-725
    Spencer JFT, Spencer DM, Tulloch AP (1979) Extracellular glycolipids of yeasts. In Rose AP (ed) Economic microbiology. Acad emic Press, Inc. New York. 3: 523-540
    Stanghellini ME, Miller RM (1997) Biosurfactants- their identity and potential efficacy in the biology control of zoosporic plant pathogens. Plant Dis. 81: 4-12
    Suzuki T, Yamane T, Shimizu S (1990) Phenomenological background and some preliminary trials of automated substrate supply in pH-stat modal fed-batch culture using a set-point of high limit. J. Ferm. Bioeng. 69: 292-297
    Syldatk C, Lang S, Wagner F (1985) Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas sp. DSM2874. Z. Naturforesh. 40C: 61-67
    Syldatk C, Lang S, Wagner F (1985) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas sp. DSM 2874 grown on n-alkanes. Z. Naturforsch. 40C: 51-60
    Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. J. Biosci. Bioeng. 98: 263-286
    Thimon L, Peypoux F, Maget-Dana R, Roux B, Michel G (1992) Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis. Biotechnol. Appl. Biochem. 16: 144-151
    Thompson JD, Higgins DG, Gibso, TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalty and weight matrix choice. Nucleic Acids Res. 22: 4673-4680
    Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J. Control Release. 73: 137-172
    Ueno M, Esumi K (1984) Structure/Performance relationship in surfactants. Marcel Dekker. New York. 1-24
    Van GS, Sung S (2001) Biohydrogen production as a Function of pH and substrate concentration. Environ. Sci. Technol. 35: 4726-4730
    Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol. Adv. 24: 604-620
    Van Kuppeveld FJ, Van der Logt JT, Angulo AF, Van Zoest MJ, Quint WG, Niesters HG, Galama JM, Melchers WJ (1992) Genus- and species-specific identification of mycoplasmas by 16S rRNA amplification. Appl. Environ. Microbiol. 58: 2606-2615
    Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings, J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407-438.
    Venkata Ramana K, Karanth NG (1989) Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J. Chem. Technol. Biotechnol. 45: 249-257
    Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation. 8: 401-417
    Wei YH, Chu IM (1998) Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme Microb. Technol. 22: 724-728
    Wei YH, Chu IM (2002) Mn2+ improves surfactin production by Bacillus subtilis. Biotechnol. Lett. 24: 479-482
    Wei YH, Chou CL, Chang JS (2005) Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem. Eng. J. 27: 146-154
    Wei Y.H, Wang LF, Chang JS (2004) Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnol. Prog. 20: 979-983
    Wei YH, Wang LF, Chang JS, Kung SS (2003) Identification of induced acidification in iron-enriched cultures of Bacillus subtilis during biosurfactant fermentation. J. Biosci. Bioeng. 96: 174-178
    Whiffin VS, Cooney MJ, Cord-Ruwish R (2004) Online detection of feed demand in high cell density culture of Escherichia coli by measurement in dissolved oxygen transients in complex media. Biotechnol. Bioeng. 85: 412-433
    White D (1995) The Physiology and biochemistry of prokryotes. Chapter 2, Oxford University Press, Inc.
    Yamaguchi M, Sato A, Yukuyama A (1976) Microbial production of sugar-lipids. Chem. Ind. 4: 741-742
    Yamane T, Shimizu S (1984) Fed-batch techniques in microbial processes. Adv Biochem. Eng. Biotechnol. 30: 147-194
    Yeh MS, Wei YH, Chang JS (2005) Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. Biotechnol. Prog. 21: 1329-1334
    Yeh MS, Wei, Y-H, Chang JS (2006) Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochem. 41: 1799-1805
    Zairossani M. Nor, Melih I. Tamer, Jeno M. Scharer, Murray Moo-Young, Eric J. Jervis (2001) Automated fed-batch culture of Kluyveromyces fragilis based on a novel method for on-line estimation of cell specific growth rate. Biochem. Eng. J. 9: 221-231
    Zhang J (1997) Alexander, G., Richard, A.G., Alfred, L.A., and David, K. Incorporation of 2-hydroxy fatty acids by Acinetobacter calcoaceticus RAG-1 to tailor emulsan structure. Int. J. Biol. Macromol. 20: 9-21
    Zhao YN, Chen G, Yao SJ (2006) Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochem. Eng. J. 32: 93-99

    下載圖示 校內:2012-06-23公開
    校外:2012-06-23公開
    QR CODE