簡易檢索 / 詳目顯示

研究生: 劉政緯
Liu, Zheng-Wei
論文名稱: 矽烯吸附鋁原子的豐富電子特色:第一原理計算
First-Principles Calculations on Feature-Rich Electronic Properties of Aluminum-Adsorbed Silicene
指導教授: 林明發
Lin, Min-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 42
中文關鍵詞: 固態物理第一原理矽烯鋁原子吸附
外文關鍵詞: solid state physics, first principle, silicene, aluminum adsorption
相關次數: 點閱:89下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 眾所皆知,石墨烯和矽烯等第四族元素所形成的二維結構材料,由於獨特的結構、電子特性及化學特性等,已經是現階段非常熱門的討論對象。本碩士論文主要以VASP作為計算工具,來進行第一原理的詳細數值計算,以模擬晶體的電子密度分布,並探討其中的各種特性。
    主要研究物質是極對稱下的矽烯吸附鋁原子,討論不同濃度和排列方式來吸附所造成的幾何結構、電子特性、電荷分布和態密度(density of state, DOS)變化,並藉由調控濃度來了解其吸附情形和鍵結變化趨勢,再探討複雜的混成軌域所造成的能帶劇烈破壞。另一方面,利用電荷密度分布及轉移情況來釐清鍵能的運作模式,透過軌域投影態密度(orbital-projected density of state, PDOS)的貢獻表示,更透徹的分析能帶結構,且由態密度和空間中的電荷分布,再次驗證矽鋁鍵結所表現出的多元特性。

    Graphene, silicene, and group IV graphene-related systems have already been very popular subjects for quite some time. Especially, it has unique structural, electronic properties and chemical properties. In this thesis, we use the first principle calculations to study the properties and simulate the electron density distribution of crystal by VASP.
    The study focuses on aluminum-adsorbed silicene, considering the case of extreme symmetric. Geometric structures, electronic Structures, charge distributions, and density of states (DOS) strongly depend on the different configurations and the various concentrations of aluminum adatoms. We research the adsorption of atoms and trend of bondings which can be remarkably modulated by Al-concentrations, investigating serious destruction of electronic structures with complex orbital hybridizations. On the other hand, the use of electron density distribution and charge transfer can clarify the operation of bond energy. The orbital-projected density of state (PDOS) can analyze the band structures in detail. The DOS and spatial charge distributions clearly indicate that the special bonds in Si-Si and Al-Si are responsible for the diversified properties.

    Chapter 1. Introduction...1 Chapter 2. Computational methodology...7 Chapter 3. Results and discussion...8 3.1 Atomic structure...8 3.2 Electronic structure...19 3.3 Charge density and charge transfer...26 3.4 Density of states...29 Chapter 4. Conclusion...34 References...36

    [1] K.S. Novoselov, A.K. Geim, et al., "Electric field effect in atomically thin carbon films". Science 306, 5696(666-669) (2004).
    [2] C. Berger, Z. Song, et al., "Electronic confinement and coherence in patterned epitaxial graphene". Science 312, 5777(1191-1196) (2006).
    [3] A.K. Geim, and K.S. Novoselov, "The rise of graphene". Nat Mater 6, 3(183-191) (2007).
    [4] P.R. Wallace, "The Band Theory of Graphite". Phys. Rev. 71, 9(622-634) (1947).
    [5] J.W. McClure, "Diamagnetism of Graphite". Phys. Rev. 104, 3(666-671) (1956).
    [6] J.C. Slonczewski, and P.R. Weiss, "Band Structure of Graphite". Phys. Rev. 109, 2(272-279) (1958).
    [7] G.W. Semenoff, "Condensed-Matter Simulation of a Three-Dimensional Anomaly". Phys. Rev. Lett. 53, 26(2449-2452) (1984).
    [8] E. Fradkin, "Critical behavior of disordered degenerate semiconductors. II. Spectrum and transport properties in mean-field theory". Phys. Rev. B 33, 5(3263-3268) (1986).
    [9] F.D. Haldane, "Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly"". Phys Rev Lett 61, 18(2015-2018) (1988).
    [10] C.P. Chang, C.L. Lu, et al., "Magnetoelectronic properties of a graphite sheet". Carbon 42, 14(2975-2980) (2004).
    [11] K.S. Novoselov, A.K. Geim, et al., "Two-dimensional gas of massless Dirac fermions in graphene". Nature 438, 7065(197-200) (2005).
    [12] K.S. Novoselov, D. Jiang, et al., "Two-dimensional atomic crystals". P Natl Acad Sci USA 102, 30(10451-10453) (2005).
    [13] Y. Zhang, Y.W. Tan, et al., "Experimental observation of the quantum Hall effect and Berry's phase in graphene". Nature 438, 7065(201-204) (2005).
    [14] J.H. Ho, C.L. Lu, et al., "Coulomb excitations in AA- and AB-stacked bilayer graphites". Phys. Rev. B 74, 8 (2006).
    [15] Y.H. Lai, J.H. Ho, et al., "Magnetoelectronic properties of bilayer Bernal graphene". Phys. Rev. B 77, 8 (2008).
    [16] A.A. Balandin, S. Ghosh, et al., "Superior thermal conductivity of single-layer graphene". Nano letters 8, 3(902-907) (2008).
    [17] C. Lee, X. Wei, et al., "Measurement of the elastic properties and intrinsic strength of monolayer graphene". science 321, 5887(385-388) (2008).
    [18] K. Nakada, M. Fujita, et al., "Edge state in graphene ribbons: Nanometer size effect and edge shape dependence". Phys. Rev. B 54, 24(17954-17961) (1996).
    [19] V. Barone, O. Hod, et al., "Electronic structure and stability of semiconducting graphene nanoribbons". Nano Lett 6, 12(2748-2754) (2006).
    [20] M. Ezawa, "Peculiar width dependence of the electronic properties of carbon nanoribbons". Phys. Rev. B 73, 4 (2006).
    [21] Y.W. Son, M.L. Cohen, et al., "Half-metallic graphene nanoribbons". Nature 444, 7117(347-349) (2006).
    [22] Y.W. Son, M.L. Cohen, et al., "Energy gaps in graphene nanoribbons". Phys Rev Lett 97, 21(216803) (2006).
    [23] Z. Chen, Y.-M. Lin, et al., "Graphene nano-ribbon electronics". Physica E: Low-dimensional Systems and Nanostructures 40, 2(228-232) (2007).
    [24] M.Y. Han, B. Ozyilmaz, et al., "Energy band-gap engineering of graphene nanoribbons". Phys Rev Lett 98, 20(206805) (2007).
    [25] O. Hod, V. Barone, et al., "Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons". Nano Lett 7, 8(2295-2299) (2007).
    [26] E.-J. Kan, Z. Li, et al., "Will zigzag graphene nanoribbon turn to half metal under electric field?". Appl. Phys. Lett. 91, 24(243116) (2007).
    [27] X. Wang, Y. Ouyang, et al., "Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors". Phys Rev Lett 100, 20(206803) (2008).
    [28] X. Yang, X. Dou, et al., "Two-dimensional graphene nanoribbons". J Am Chem Soc 130, 13(4216-4217) (2008).
    [29] L. Jiao, L. Zhang, et al., "Narrow graphene nanoribbons from carbon nanotubes". Nature 458, 7240(877-880) (2009).
    [30] D.V. Kosynkin, A.L. Higginbotham, et al., "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons". Nature 458, 7240(872-876) (2009).
    [31] D. Krepel, and O. Hod, "Lithium adsorption on armchair graphene nanoribbons". Surf Sci. 605, 17-18(1633-1642) (2011).
    [32] S.Y. Lin, S.L. Chang, et al., "Feature-rich electronic properties in graphene ripples". Carbon 86, (207-216) (2015).
    [33] X. Li, W. Cai, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils". Science 324, 5932(1312-1314) (2009).
    [34] M.Q. Long, L. Tang, et al., "Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons: Theoretical Predictions". Acs Nano 5, 4(2593-2600) (2011).
    [35] M.P. Levendorf, C.J. Kim, et al., "Graphene and boron nitride lateral heterostructures for atomically thin circuitry". Nature 488, 7413(627-632) (2012).
    [36] Q. Peng, X.-J. Chen, et al., "Mechanical stabilities and properties of graphene-like aluminum nitride predicted from first-principles calculations". RSC Advances 3, 19(7083) (2013).
    [37] S. Cahangirov, M. Topsakal, et al., "Two- and one-dimensional honeycomb structures of silicon and germanium". Phys Rev Lett 102, 23(236804) (2009).
    [38] A. Kara, C. Léandri, et al., "Physics of Silicene Stripes". Journal of Superconductivity and Novel Magnetism 22, 3(259-263) (2009).
    [39] S. Lebègue, and O. Eriksson, "Electronic structure of two-dimensional crystals from ab initio theory". Phys. Rev. B 79, 11 (2009).
    [40] B. Aufray, A. Kara, et al., "Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene". Appl. Phys. Lett. 96, 18(183102) (2010).
    [41] B. Lalmi, H. Oughaddou, et al., "Epitaxial growth of a silicene sheet". Appl. Phys. Lett. 97, 22(223109) (2010).
    [42] M. Houssa, E. Scalise, et al., "Electronic properties of hydrogenated silicene and germanene". Appl. Phys. Lett. 98, 22(223107) (2011).
    [43] A. Kara, H. Enriquez, et al., "A review on silicene — New candidate for electronics". Surface Science Reports 67, 1(1-18) (2012).
    [44] Q.H. Wang, K. Kalantar-Zadeh, et al., "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides". Nat Nanotechnol 7, 11(699-712) (2012).
    [45] J. Xiao, M. Long, et al., "Effects of van der Waals interaction and electric field on the electronic structure of bilayer MoS2". J Phys Condens Matter 26, 40(405302) (2014).
    [46] A.K. Geim, "Graphene: status and prospects". Science 324, 5934(1530-1534) (2009).
    [47] L. Chen, C.C. Liu, et al., "Evidence for Dirac fermions in a honeycomb lattice based on silicon". Phys Rev Lett 109, 5(056804) (2012).
    [48] A. O'Hare, F.V. Kusmartsev, et al., "A stable "flat" form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors?". Nano Lett 12, 2(1045-1052) (2012).
    [49] P. Vogt, P. De Padova, et al., "Silicene: compelling experimental evidence for graphenelike two-dimensional silicon". Phys Rev Lett 108, 15(155501) (2012).
    [50] X. Jia, J. Campos-Delgado, et al., "Graphene edges: a review of their fabrication and characterization". Nanoscale 3, 1(86-95) (2011).
    [51] L.P. Biró, P. Nemes-Incze, et al., "Graphene: nanoscale processing and recent applications". Nanoscale 4, 6(1824-1839) (2012).
    [52] W. Hu, X. Wu, et al., "Helium separation via porous silicene based ultimate membrane". Nanoscale 5, 19(9062-9066) (2013).
    [53] K. Takeda, and K. Shiraishi, "Theoretical possibility of stage corrugation in Si and Ge analogs of graphite". Phys. Rev. B 50, 20(14916-14922) (1994).
    [54] E. Durgun, S. Tongay, et al., "Silicon and III-V compound nanotubes: Structural and electronic properties". Phys. Rev. B 72, 7 (2005).
    [55] G.G. Guzmán-Verri, and L.C. Lew Yan Voon, "Electronic structure of silicon-based nanostructures". Phys. Rev. B 76, 7 (2007).
    [56] D. Jose, and A. Datta, "Understanding of the Buckling Distortions in Silicene". The Journal of Physical Chemistry C 116, 46(24639-24648) (2012).
    [57] C.C. Liu, W. Feng, et al., "Quantum spin Hall effect in silicene and two-dimensional germanium". Phys Rev Lett 107, 7(076802) (2011).
    [58] D. Chiappe, C. Grazianetti, et al., "Local electronic properties of corrugated silicene phases". Adv Mater 24, 37(5088-5093) (2012).
    [59] K.J. Koski, and Y. Cui, "The new skinny in two-dimensional nanomaterials". Acs Nano 7, 5(3739-3743) (2013).
    [60] M. Xu, T. Liang, et al., "Graphene-like two-dimensional materials". Chem Rev 113, 5(3766-3798) (2013).
    [61] J. Gao, J. Zhang, et al., "Structures, mobilities, electronic and magnetic properties of point defects in silicene". Nanoscale 5, 20(9785-9792) (2013).
    [62] C.L. Kane, and E.J. Mele, "Quantum spin Hall effect in graphene". Phys Rev Lett 95, 22(226801) (2005).
    [63] B.A. Bernevig, T.L. Hughes, et al., "Quantum spin Hall effect and topological phase transition in HgTe quantum wells". Science 314, 5806(1757-1761) (2006).
    [64] C.-C. Liu, H. Jiang, et al., "Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin". Phys. Rev. B 84, 19 (2011).
    [65] Y.C. Huang, C.P. Chang, et al., "Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons". Nanotechnology 18, 49(495401) (2007).
    [66] B. Feng, Z. Ding, et al., "Evidence of silicene in honeycomb structures of silicon on Ag(111)". Nano Lett 12, 7(3507-3511) (2012).
    [67] L. Meng, Y. Wang, et al., "Buckled silicene formation on Ir(111)". Nano Lett 13, 2(685-690) (2013).
    [68] A. Fleurence, R. Friedlein, et al., "Experimental evidence for epitaxial silicene on diboride thin films". Phys Rev Lett 108, 24(245501) (2012).
    [69] M. Rachid Tchalala, H. Enriquez, et al., "Formation of one-dimensional self-assembled silicon nanoribbons on Au(110)-(2 × 1)". Appl. Phys. Lett. 102, 8(083107) (2013).
    [70] X. Xu, J. Zhuang, et al., "Effects of oxygen adsorption on the surface state of epitaxial silicene on Ag(111)". Sci Rep 4, (7543) (2014).
    [71] W. Wei, Y. Dai, et al., "Many-body effects in silicene, silicane, germanene and germanane". Phys Chem Chem Phys 15, 22(8789-8794) (2013).
    [72] H.T. Liu, Y.Q. Liu, et al., "Chemical doping of graphene". Journal of Materials Chemistry 21, 10(3335-3345) (2011).
    [73] D. Wei, Y. Liu, et al., "Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties". Nano Lett 9, 5(1752-1758) (2009).
    [74] F. Joucken, Y. Tison, et al., "Charge transfer and electronic doping in nitrogen-doped graphene". Sci Rep 5, (14564) (2015).
    [75] P. Lauffer, K.V. Emtsev, et al., "Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy". Phys. Rev. B 77, 15(155426) (2008).
    [76] P. Sutter, M.S. Hybertsen, et al., "Electronic structure of few-layer epitaxial graphene on Ru(0001)". Nano Lett 9, 7(2654-2660) (2009).
    [77] X.L. Zhong, R. Pandey, et al., "Stacking dependent electronic structure and transport in bilayer graphene nanoribbons". Carbon 50, 3(784-790) (2012).
    [78] N.T.T. Tran, S.Y. Lin, et al., "Configuration-Induced Rich Electronic Properties of Bilayer Graphene". J Phys Chem C 119, 19(10623-10630) (2015).
    [79] S.L. Chang, B.R. Wu, et al., "Configuration-dependent geometric and electronic properties of bilayer graphene nanoribbons". Carbon 77, (1031-1039) (2014).
    [80] Y.H. Lai, J.H. Ho, et al., "Magnetoelectronic properties of bilayer Bernal graphene". Phys. Rev. B 77, 8(085426) (2008).
    [81] C.Y. Lin, J.Y. Wu, et al., "Magneto-electronic properties of multilayer graphenes". Phys Chem Chem Phys 17, 39(26008-26035) (2015).
    [82] H.C. Chung, C.P. Chang, et al., "Electronic and optical properties of graphene nanoribbons in external fields". Phys Chem Chem Phys 18, 11(7573-7616) (2016).
    [83] C.L. Lu, C.P. Chang, et al., "Influence of an electric field on the optical properties of few-layer graphene with AB stacking". Phys. Rev. B 73, 14 (2006).
    [84] Y.H. Ho, Y.H. Chiu, et al., "Magneto-optical Selection Rules in Bilayer Bernal Graphene". Acs Nano 4, 3(1465-1472) (2010).
    [85] J.Y. Wu, S.C. Chen, et al., "Plasma Excitations in Graphene: Their Spectral Intensity and Temperature Dependence in Magnetic Field". Acs Nano 5, 2(1026-1032) (2011).
    [86] J.H. Wong, B.R. Wu, et al., "Strain Effect on the Electronic Properties of Single Layer and Bilayer Graphene". J Phys Chem C 116, 14(8271-8277) (2012).
    [87] V.M. Pereira, and A.H. Castro Neto, "Strain Engineering of Graphene's Electronic Structure". Phys. Rev. Lett. 103, 4(046801) (2009).
    [88] S.Y. Lin, S.L. Chang, et al., "H-Si bonding-induced unusual electronic properties of silicene: a method to identify hydrogen concentration". Phys Chem Chem Phys 17, 39(26443-26450) (2015).
    [89] P. Hohenberg, and W. Kohn, "Inhomogeneous Electron Gas". Phys. Rev. B 136, 3b(B864-+) (1964).
    [90] W. Kohn, and L.J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects". Phys. Rev. 140, 4a(1133-&) (1965).
    [91] G. Kresse, and J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set". Phys. Rev. B 54, 16(11169-11186) (1996).
    [92] G. Kresse, and J. Furthmuller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set". Comp Mater Sci 6, 1(15-50) (1996).
    [93] G. Kresse, and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method". Phys. Rev. B 59, 3(1758-1775) (1999).
    [94] D.M. Ceperley, and B.J. Alder, "Ground-State of the Electron-Gas by a Stochastic Method". Phys. Rev. Lett. 45, 7(566-569) (1980).
    [95] P.E. Blöchl, "Projector augmented-wave method". Phys. Rev. B 50, 24(17953-17979) (1994).
    [96] R.P. Feynman, "Forces in molecules". Phys. Rev. 56, 4(340-343) (1939).
    [97] R. Qin, C.-H. Wang, et al., "First-principles calculations of mechanical and electronic properties of silicene under strain". AIP Advances 2, 2(022159) (2012).
    [98] H. Sahin, and F.M. Peeters, "Adsorption of alkali, alkaline-earth, and 3dtransition metal atoms on silicene". Phys. Rev. B 87, 8 (2013).
    [99] J. Sivek, H. Sahin, et al., "Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties". Phys. Rev. B 87, 8 (2013).
    [100] C.-w. Zhang, and S.-s. Yan, "First-Principles Study of Ferromagnetism in Two-Dimensional Silicene with Hydrogenation". The Journal of Physical Chemistry C 116, 6(4163-4166) (2012).
    [101] M. Ezawa, "Quantum Hall Effects in Silicene". J. Phys. Soc. Jpn. 81, 6(064705) (2012).
    [102] X.L. Zhang, L.F. Liu, et al., "Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene". Sci Rep 3, (2908) (2013).
    [103] K.T. Chan, J.B. Neaton, et al., "First-principles study of metal adatom adsorption on graphene". Phys. Rev. B 77, 23 (2008).
    [104] T. Ohta, A. Bostwick, et al., "Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy". Phys Rev Lett 98, 20(206802) (2007).
    [105] T. Ohta, A. Bostwick, et al., "Controlling the electronic structure of bilayer graphene". Science 313, 5789(951-954) (2006).
    [106] R. Balog, B. Jorgensen, et al., "Bandgap opening in graphene induced by patterned hydrogen adsorption". Nat Mater 9, 4(315-319) (2010).
    [107] R. Grassi, T. Low, et al., "Scaling of the energy gap in pattern-hydrogenated graphene". Nano Lett 11, 11(4574-4578) (2011).
    [108] C. Lin, Y. Feng, et al., "Direct observation of ordered configurations of hydrogen adatoms on graphene". Nano Lett 15, 2(903-908) (2015).
    [109] J.W.G. Wildoer, L.C. Venema, et al., "Electronic structure of atomically resolved carbon nanotubes". Nature 391, 6662(59-62) (1998).
    [110] Y.C. Chen, D.G. de Oteyza, et al., "Tuning the band gap of graphene nanoribbons synthesized from molecular precursors". Acs Nano 7, 7(6123-6128) (2013).
    [111] H. Huang, D. Wei, et al., "Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons". Sci Rep 2, (983) (2012).
    [112] H. Sode, L. Talirz, et al., "Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy". Phys. Rev. B 91, 4 (2015).
    [113] J. Choi, H. Lee, et al., "Atomic-Scale Investigation of Epitaxial Graphene Grown on 6H-SiC(0001) Using Scanning Tunneling Microscopy and Spectroscopy". J Phys Chem C 114, 31(13344-13348) (2010).
    [114] L. Tapaszto, G. Dobrik, et al., "Tuning the electronic structure of graphene by ion irradiation". Phys. Rev. B 78, 23 (2008).
    [115] M. Gyamfi, T. Eelbo, et al., "Fe adatoms on graphene/Ru(0001): Adsorption site and local electronic properties". Phys. Rev. B 84, 11 (2011).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE