簡易檢索 / 詳目顯示

研究生: 蒲鈺茹
Pu, Yu-Ru
論文名稱: 含三苯胺與1,3,4-噁二唑基團之雙極主體材料:合成、鑑定及應用於磷光發光二極體
Bipolar Host Materials Composed of Triphenylamine and 1,3,4-Oxadiazole Groups: Synthesis, Characterization and Application in Emitting Layer of PhOLEDs
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 87
中文關鍵詞: 磷光有機發光二極體主體材料三苯胺噁二唑
外文關鍵詞: phosphorescent OLEDs, host materials, triphenylamine, oxdiazole
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷光有機發光二極體(phosphorescent organic light-emitting diodes, PhOLEDs)由於可藉由單重態激子與三重態激子達到內部量子效率100%,在未來的平面顯示器與照明的應用上具有相當潛力。一般來說,為了促進元件載子平衡、增加電子與電洞於發光層再結合的機率,所使用的主體材料(host materials)通常具有電子傳輸能力以及電洞傳輸能力,而不同主體材料的設計會影響到電子與電洞再結合的比例(recombination ratio)。
    本研究合成含有親電洞的三苯胺(triphenylamine)基團搭配不同比例親電子噁二唑(oxadiazole)基團結合之雙極主體材料(bipolar host materials),命名為TPA-2OXD與TPA-3OXD。由於TPA-2OXD與TPA-3OXD的剛硬且非平面構形特性,其皆俱有高熱裂解溫度(>300 oC)與玻璃轉移溫度(>100 oC),並且有均勻、穩定的成膜性質(RMS roughness< 1 nm)。在元件表現方面,利用濕式製程(solution process)分別以TPA-2OXD與TPA-3OXD混摻3 wt%綠色磷光材料Ir(ppy)3製作綠色磷光元件[ITO/PEDOT:PSS/host: 3 wt% Ir(ppy)3/BCP/LiF/Al],元件最高亮度分別為8190 cd/m2、6299 cd/m2,最大電流效率分別為4.50 cd/A、1.53 cd/A,以TPA-2OXD 為主體材料時其元件性能較優,也比傳統的磷光主體材料PVK優,主要歸因於TPA-2OXD優秀的電子與電洞傳輸能力且載子較TPA-3OXD平衡,因此於發光層再結合的機率較高使得磷光元件的發光效率較佳。

    Phosphorescent organic light-emitting diodes (PhOLEDs) offer a bright future for the next generation flat panel displays and lighting sources due to their high quantum efficiency through utilizing both singlet and triplet excitons to achieve the internal quantum efficiency of devices up to 100% theoretically. Generally, to facilitate balanced carrier recombination, host materials have to be capable of transporting both holes and electrons. However, the molecular design of the host materials affects the charge recombination zones.In this study, we designed and synthesized two host materials TPA-2OXD and TPA-3OXD composed of hole-transporting triphenylamino core linked with two and three electron-transporting aromatic 1,3,4-oxdiazolyl derivatives, respectively. They exhibited good thermal stability (Td > 300 oC, Tg > 100 oC) because of its rigid and non-planar structure. In addition, homogeneous films were readily obtained for both TPA-2OXD and TPA-3OXD by spin-coating process. Green PhOLEDs were successfully fabricated using Ir(ppy)3 as emitter [ITO/PEDOT:PSS/host+3 wt% Ir(ppy)3/BCP/LiF/Al]. The performances of TPA-2OXD-based device (maximum luminance: 8190 cd/m2, maximum current efficiency: 4.50 cd/A) were better than TPA-3OXD-based one (6299 cd/m2, 1.53 cd/A). This has been attributed to charge transport in TPA-2OXD is more balanced than TPA-3OXD that leads to higher recombination ratio. Moreover, the TPA-2OXD also excels conventional host-poly(N-vinylcarbazole) (PVK) in terms of device performance.

    摘要 I 誌謝 VIII 目錄 X 流程目錄 XIII 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 理論基礎 4 1-2-1 有機共軛導電材料 4 1-2-2 螢光理論 5 1-2-3 影響螢光強度因素 8 1-2-4 分子間激發態(interchain exciton) 9 1-3 元件結構與發光原理 12 1-3-1 OLED元件結構 12 1-3-2 OLED元件發光原理 14 1-4 能量傳遞機制 17 1-4-1 主體與客體能量轉移原理(host-guest energy transfer) 17 1-4-2 摻雜螢光材料之能量轉移 19 1-4-3 摻雜磷光材料之能量轉移 20 1-5 影響OLED發光效率之因素 21 第二章 文獻回顧 23 2-1 磷光主體材料(host materials) 23 2-2 磷光摻雜材料 27 2-3 濕式製程磷光發光二極體元件結構 28 2-4 可濕式製程小分子磷光主體材料 30 2-5 研究動機 32 第三章 實驗內容 33 3-1 實驗裝置及設備 33 3-2 鑑定儀器 35 3-3 物性及光電量測儀器 36 3-4 實驗藥品與材料 42 3-5 反應步驟與結果 44 3-6 元件製作與測量 48 第四章 結果與討論 52 4-1 單體結構之合成與鑑定 52 4-1-1 一維核磁共振光譜(1H-NMR) 52 4-1-2 二維核磁共振光譜(2D NMR) 53 4-1-3 質譜儀(MS) 54 4-2 熱性質分析 61 4-2-1 熱重分析(TGA) 61 4-2-2 微差式掃描熱卡計分析(DSC) 61 4-3 光學性質分析 65 4-3-1 UV/vis 吸收光譜及PL 發光光譜 65 4-4 電化學性質分析 69 4-5 成膜性質分析 73 4-6 磷光元件 76 4-6-1 單一載子傳輸元件(single-carrier-transporting devices) 76 4-6-2 元件電激發光性質(electroluminescence of OLEDs) 79 4-6-3 電激發光光譜(electroluminescence spectra, EL) 80 第五章 結論 83 參考資料 85

    [1] M. Pope, P. Magnante, and H. P. Kallmann, J. Chem. Phys., vol. 38, p. 2042, 1963.
    [2] C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., vol. 51, p. 913, 1987.
    [3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, et al., Nature, vol. 347, p. 539, 1990.
    [4] 郭昭輝, PLED之發展技術, 塑膠資訊雜誌., 2002
    [5] J. R. Lakowicz, Principles of Fluorescence Spectroscopy. 3rd ed.: Springer, 2006.
    [6] D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of Instrumental Analysis. 6th ed, 2007.
    [7] L. Akcelrud, Prog Polym Sci, vol. 28, p. 875, 2003.
    [8] V. Tran and B. J. Schwartz, J Phys Chem B, vol. 103, p. 5570, 1999.
    [9] J. E. Guillet, Polymer Photophysics and Photochemistry. New York: Canbridge University Press, 1985.
    [10] H. H. Shih and C. H. Cheng, "Blue Phosphoresent Emitters and Hosts and Their Application in Organic and Their Application in Organic Electroluminescent Devices," Department of Chemistry, National Tsing Hua University, 2007.
    [11] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thomspon, S. R. Forrest, Nature, vol. 395, p. 151, 1998.
    [12] N. J. Turro, Modern Molecular Photochemistry: University Science Book, CA, 1911.
    [13] Z. H. Kafafi, Organic Electroluminescence, 2005.
    [14] V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems. 2nd, rev. and enl. ed., 2004.
    [15] M. A. Baldo, D. F. O'Brien, M. E. Thomspon, and S. R. Forrest, Phys. Rev. B, vol. 60, 1999.
    [16] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny, Nature, vol. 411, p. 617-617, 2001.
    [17] M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch, and M. E. Thompson, J. Am. Chem. Soc, vol. 125, p. 7796, 2003.
    [18] F. C. Chen, G. F. He, and Y. Yang, Apply. Phys. Lett, vol. 82, p. 1006, 2003.
    [19] D. M. Pai, J. F. Yanus, and M. Stolka, J. Phys. Chem., vol. 88, p. 4717, 1984.
    [20] X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan, and A. J. Heeger, Adv. Mater, vol. 14, p. 581, 2001.
    [21] P. I. Shih, C. H. Chien, F. I. Wu, and C. F. Shu, Adv. Funct. Mater, vol. 17, p. 3514, 2007.
    [22] A. B. Padmaperuma, L. S. Sapochak, and P. E. Burrows, Chem. Mater., vol. 18, p. 2389, 2006.
    [23] T. Tsuji, S. Kawami, T. Miyaguchi, T. Naijo, T. Yuki, S. Matsuo, H. Miyazaki, Proceedings of SID'04. Seattle, USA, 2004.
    [24] Z. Ge, T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto, T. Kajita, M. A. Kakimoto, Adv. Funct. Mater, vol. 18, p. 584, 2008.
    [25] Y. Tao, Q. Wang, C. Yang, Z. Zheng, T. Zou, J. Qin, et al., Angew. Chem. Int. Ed., vol. 47, p. 8104, 2008.
    [26] Y. Tao, Q. Wang, C. Yang, C. Zhong, J. Qin, and D. Ma, Adv. Funct. Mater, vol. 20, p. 2923, 2010.
    [27] T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, R. J. Holmes, S. R. Forrest, Inorganic Chemistry, vol. 44, p. 7992, 2005.
    [28] N. Rehmann, D. Hertel, K. Meerholz, H. Becker, and S. Heun, Appl. Phys. Lett, vol. 91, p. 103507, 2007.
    [29] X. Yang, D. Neher, D. Herte, and T. K. Doaubler, Adv. Mater, vol. 16, p. 161, 2004.
    [30] T. Earmme, E. Ahmed, and S. A. Jenekhe, vol. 22, p. 4744, 2010.
    [31] T. Earmme and S. A. Jenekhe, Adv. Funct. Mater, vol. 22, 2012.
    [32] T. Earmme and S. A. Jenekhe, J. Mater. Chem, vol. 22, p. 4660, 2012.
    [33] K. S. Yook and J. Y. Lee, Adv. Mater, 2014.
    [34] C. Jiang, W. Yang, J. Peng, S. Xiao, and Y. Cao, Adv. Mater, vol. 16, p. 537, 2004.
    [35] Y. C. Chen, G. S. Huang, C. C. Hsiao, and S. A. Chen, J. Am. Chem. Soc, vol. 128, p. 8549, 2006.
    [36] H. Wu, G. Zhou, J. Zou, C. L. Ho, W. Y. Wong, W. Yang, J. Peng, Y. Cao, Adv. Mater, vol. 21, p. 4181, 2009.
    [37] J. Lee, N. Chopra, S. H. Eom, Y. Zheng, and J. Xue, Appl. Phys. Lett, vol. 93, p. 123306, 2008.
    [38] S. Lamansky, R. C. Kwong, M. Negent, P. I. Djurovich, and M. E. Thompson, Org. Electron, vol. 2, p. 53, 2001.
    [39] S. Lamansky, P. I. Djurovich, F. Abdel-Razzaq, S. Garon, D. L. Murphy, and M. E. Thompson, Appl. Phys. Lett, vol. 92, p. 1570, 2002.
    [40] B. Park, Y. H. Huh, H. G. Jeon, C. H. Park, T. K. Kang, B. H. Kim, et al., J. Appl. Phys., J. Park, vol. 108, p. 94506, 2010.
    [41] Y.-T. Lee, Y.-T. Chang, M.-T. Lee, P.-H. Chiang, C.-T. Chen, and C.-T. Chen, J. Mater. Chem. C, vol. 2, p. 382, 2014.
    [42] L. J. Deng, J. Y. Li, and W. Li, Dyes and Pigments, vol. 102, p. 150, 2014.
    [43] Y. Shirota, K. Okumoto, and H. Inada, Synth. Met., vol. 111, p. 387, 2000.
    [44] J. F. Rusling and S. L.Suib, Adv. Mater, vol. 6, 1994.
    [45] M. H. Tasi, Y. H. Hong, C. H. Chang, H. C. Su, and C. C. Wu, Adv. Mater, vol. 19, p. 862, 2007.
    [46] M. S. Lin, S. J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tasi, and C. C. Wu, vol. 22, p. 16114, 2012.
    [47] Y. Tao, Q. Wang, C. Yang, C. Zhong, K. Zhang, J. Qin, D. Ma, Adv. Funct. Mater, vol. 20, p. 304, 2010.
    [48] L. Tao, J. Li, Y. Yu, Y. Jiang, C. S. Zhou, S. T. Lee, X. Zhang, O. Kwon, Chem. Mater., vol. 21, p. 1284, 2009.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE