| 研究生: |
賴柏佑 Lai, Alexis |
|---|---|
| 論文名稱: |
三維十字型微管道液滴生成之數值模擬 Numerical simulation of Generation of Droplets in Three-Dimensional Cross Microchannels |
| 指導教授: |
李定智
Lee, Denz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 三維交錯微管道 、液滴生成 、數值模擬 |
| 外文關鍵詞: | Numerical simulation, Formation of droplet, 3-D cross micro-channel |
| 相關次數: | 點閱:67 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來微全分析系統(μ-TAS)的發展日益精進,使得微機電技術(MEMS)可以快速發展,而微尺度下的管道時間裝置具有不易受汙染、實驗成本低、樣本需求數少與體積微小等優點,而因為可應用的範圍廣泛,故讓實驗結構越來越複雜,也需要越來越多的儀器來互相配合與應用。
因為以往之對於三維十字型微管道的流場分部與二維十字型微管道的液滴生成都是以光學顯微鏡來將實驗結果以平面的方法呈現,故本研究以利用以往之二維與三維十字型微管道進行結構的組合後,藉由商用軟體來將管道進行三維的數值模擬,使得整體流場可以以不同角度來進行觀察與探討,其中為了可以取得與實驗上的相似性與可信度,本研究將油與水之流速配置來產生液滴,並藉由改變流速配置來進行液滴生成趨勢上的探討,並將此結果與以往之研究結果做比較。而在確認整體流場與實驗之相似性後,本研究則繼續探討下游的三維十字型微管道內之流場,並探討其窗口與下游之油水分部與流場分部,並且嘗試分析其內部的油水分部之成因與主要控制整體流場的變因為何。
The development of micro total analysis system (μ-TAS) is getting well, and using micro-electromechanical system (MEMS) facilitates the micro channel experimental device and has some advantages like small size, less pollutions, few samples for experiment, low cost and so on. According to our experimental data of the combination of the cross-junction and T-junction structure, we can use this combination to generate double emulsions in our channel successfully, and the results of the experiment use the microscope to observe in two-dimension. By the commercial software Ansys Fluent to perform three-dimensional numerical simulation of the micro-channel, so that the entire flow field can be observed at different angles. In this study, in order to make similarity and credibility of the numerical results like experimental results, the flow rate of oil and water was used to generate droplets, and the trend of droplet formation was discussed by changing the flow rate configuration, and the results were compared with the previous results. After confirming the similarity of the whole flow field, we want to explore the flow field of the downstream in three-dimension microchannel, and try to analyze the internal flow field. Furthermore, we also want to know how we can control the entire flow field.
1. M. S. Talary, J. P. H. Burt and P. Pethig, “Future trends in diagnosis using laboratory-on-a-chip technologies”, Parasitology, 117, 191-203, 1998.
2. M. A. Burns, B. N. Johnson, S. N.Brahmasandra, K. Handique, J. R.Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo and D. T. Burke, “AnIntegratedNanoliter DNA AnalysisDevice”, Science, 282, 484-487, 1998.
3. W. Wang, Z. X. Li, R. Luo, S. H. Lu, A. D. Xu and Y. J. Yang, “Droplet-based Micro Oscillating-flowPCR Chip”, Journal of Micromechanics and Microengineering, 15, 1369-1377, 2005.
4. T. Nisisako, T. Torii and T. Higuchi, “Droplet formation in a microchannel network”, Lab on a chip, 2, 24-26, 2002.
5. K. Hiratsuka, A. Bohno and H. Endo, “Water droplet lubrication between hydrophilic and hydrophobic surfaces”,Journal of Physics, Conference Series, 89, 012012, 2007.
6. S. K. Chae, C.H. Lee, S.H. Lee, T.S. Kim and J.Y. Kang, “Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase”,Lab on a chip, 9, 1957-1961, 2009.
7. W. A. Bauer, M. Fischlechner, C. Abell and W.T. Huck, “Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions”, Lab on a chip, 10, 1814-1819 , 2010.
8. 陳佑慈,“三維交錯微管道中流場分析與應用”國立成功大學航空太空工程學系博士論文,2009.
9. D. Lee, Y.T. Chen and T.Y. Bai “A study of flows in tangentially crossing micro-channels,” Microfluidics andNanofluidics, 7(2): p. 169-179, 2009.
10. 江支佑, “利用交錯微管道調控混合比例之研究”, 國立成功大學航空太空工程研究所碩士論文, 2009.
11. 吳汴杭, “利用交錯微管道調控濃度比例與混合之研究”, 國立成功大學航空太空工程研究所碩士論文, 2011.
12. R. F. Ismagilov, D. Rosmarin, P. J. A. Kenis, D. T. Chiu, W. Zhang, H. A. Stone and G. M. Whitesides, “Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch”, Analytical Chemistry, 73, 4682-4687, 2001.
13. Piotr Garstecki, Micheal J. Fuerstman, Howard A. Stone, George M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up”, Lab on a Chip, 6, 437-446, 2006.
14. 苗志銘, 厲復霖, “匯流處構型對T型微流道中液滴流生成機制之影響”, 中正嶺學報, 第二期, 第三十五卷, 2007.
15. Haihu Liu, and Yonghao Zhang, “Droplet formation in microfluidic cross-junction”, Physics of Fluids, 23, 082101, 2011.
16. D. Lee, Y.T. Chen and T.Y. Bai “A study of flows in tangentially crossing micro-channels,” Microfluidics and Nanofluidics, 7(2): p. 169-179, 2009.
17. 陳景堯, “利用三維交錯微管道生成油滴與雙重包覆液滴之研究”, 國立成功大學航空太空工程學系碩士論文, 2012.
18. 張智堯, “利用微管道生成液滴與雙重包覆液滴定性方面之研究”, 國立成功大學航空太空工程學系碩士論文, 2015.
19. H. C. Berg and E.M. Purcell, “The physics of chemoreception”, Biophysics, 20, 193-219, 1997.
20. S. Wereley, “Nano-Bio-Micro fluids tutorial”, Nanotechnology 2004.
21. O. Reynolds, “An experimentsl investigation of the circumstances which determine whether the motion if water shall be direct or sinuous and the law of resistance in parallel channels”, Philosophical Transactions of the Royal Society of London, 174, 1883.
22. X. F. Peng, G. P. Peterson and B. X. Wang, “Frictional flow characteristics of water flowing through rextangular microchannel”, Experimental Heat transfer, 7, 249-264, 1994.
23. Hak, “The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture”, Journal of Fluids Engineering, 121, 5-33, 1999.
24. P. Wu and W. A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators”, Cryogenics, 23, 273-277, 1983.
25. F. M. White, “Viscous Fluid Flow”, 3rded McGraw. Hill, New York, 2006.
26. S. L. Anna, N. Bontoux and H. A. Stone, “Formation of dispersions using ‘flow focusing’ in microchannels”, Applied Physics Letters, 82, 364, 2003.
27. C. C. Chang, Z. X. Huangand R. J. Yang, “Three –dimesional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels”, Journal of Micromechanics and Microegineering, 17, 1479-1486, 2007.