| 研究生: |
陳弘偉 Chen, Hong-wei |
|---|---|
| 論文名稱: |
鎳基718超合金在不同溫度下之撞擊特性與微觀結構分析 Impact Response and Microstructural Evolution of Inconel 718 Super Alloy under Various Temperatures |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 霍普金森桿 、Inconel 718超合金 、應變速率 、差排 |
| 外文關鍵詞: | strain rate |
| 相關次數: | 點閱:99 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用霍普金森高速撞擊試驗機,研究 Inconel 718超合金在不同溫度及應變速率之撞擊特性與微觀結構,測試時試片溫度分別設定在-150℃、25℃、300℃和550℃,而應變速率則為1000 /s、3000 /s和5000 /s,以探討溫度及應變速率在塑變行為及微觀結構上之效應;同時利用OM及TEM進行微觀結構的觀察,以解析巨觀特性與微觀結構兩者間之關連性。實驗結果顯示,溫度與應變速率對Inconel 718超合金的機械性質影響甚鉅。在相同溫度條件下,其塑流應力值、加工硬化率與應變速率敏感性係數均會隨應變速率之增加而上升,但熱活化體積會變小。在相同應變速率條件下,其塑流應力值、加工硬化率與應變速率敏感性係數則會隨溫度之增加而下降,不過熱活化體積會變大。另外,藉由Zerilli-Armstrong構成方程式,可精確的描述Inconel 718超合金的塑性變形行為。另由穿透式電子顯微鏡之微觀結構分析,可清楚的觀察到差排密度會隨著應變速率上升而增加,但隨著溫度的上升而減少。而差排密度與塑變應力間之關係可藉由Bailey-Hirsch type關係式來定量描述。光學顯微鏡觀察之結果顯示,Inconel 718超合金晶界的變形程度,隨著應變速率的上升或溫度的下降更加明顯,而晶界變形程度的不同,正是證明材料在不同應變速率及溫度下的微觀結構影響。
This study uses a split-Hopkinson bar to investigate the plastic deformation behavior of Inconel 718 super alloy at the strain rates of 1000 /s, 3000 /s and 5000 /s and the temperatures of -150℃, 25℃, 300℃and 550℃, respectively. Based on the experimental results and microscopic observations, the correlations between mechanical properties and microstructure are established. The experimental results indicate that the effects of temperature and strain rate on mechanical properties of Inconel 718 super alloy are significant. At constant temperature, the flow stress, work hardening rate and strain rate sensitivity increase with increasing strain rate, but the activation volume decreases. For a constant strain rate, the flow stress, work hardening rate and strain rate sensitivity decrease with increasing temperature, but the activation volume increases. Besides, the Zerilli-Armstrong constitutive equation can be used to describe the plastic deformation of Inconel 718 super alloy precisely. Transmission electron microscopy (TEM) observations show that the dislocation density increases with increasing strain rate, but decreases with increasing temperature. The relationship between the dislocation density and flow stress can be described by the Bailey-Hirsch type relation. Optical microscopy (OM) observations reveal that the deformation of grain boundary in Inconel 718 super alloy is found to increase with the enhancement of strain rate and the decrease of temperature. Different deformation of grain boundary proves the influence of microstructure under various strain rates and temperatures.
1. H. Kolsky, “An Investigation of The Mechanical Properties of Materials at Very High Rates of Loading,” Proc. Phys. Soc., No. 62, pp. 676-700, 1949.
2. F. E. Hauser, “Techniques for Measuring Stress-Strain Relations at High Strain Rates,” Exp. Mech., Vol. 6, pp. 395-402, 1966.
3. D. J. Steinberg, S. G. Cochran and N. W. Guinan, “A Constitutive Model for Metals Applicable at High Strain Rate,” J. Appl. Phys., Vol. 51, No. 3, pp. 1498-1504, 1980.
4. J. R. Klepaczko, “Discussion of Microstructural Effects and Their Modelling at High Rates of Strain,” Int. Cong. Mech. Prop. Materials at High Rates of Strain, Oxford, pp. 283-298, 1989.
5. D. Zhao, P. K. Chaudhury, in: E. A. Loria (Ed.), Superalloys 718, 625, 706 and Various Derivatives, Pennsylvania, TMS, pp. 303, 1994.
6. C. I. Garcia, D. E. Camus, E. A. Loria, A. J. DeArdo, in: E. A. Loria (Ed.), Superalloys 718, 625 and Various Derivatives, Pennsylvania, TMS, pp. 925, 1991.
7. J. M. Zhang, L. Z. Ma, J. Y. Zhuang, Q. Deng, J. H. Du, Z. Y. Zhong, P. Janschek, Acta Metal1. Sinica, 9(6), pp. 473, 1996.
8. Z. J. Luo, N. C. Guo, Y. Cheng, in: Proc. Fourth Int. Conf. Technology of Plasticity, Beijing, pp. 1157, 1993.
9. Elihu F. Bradley, Superalloys A Technical Guide, 1988.
10. Madeleine Durand-Charre, The Microstructure of Superalloys, 1997.
11. John K. Tien, Thomas Caulfield, Superalloys, Supercomposites and Superceramics, 1989.
12. Matthew J. Donachie, JR. , Superalloys source book , 1984.
13. 陳永璋,“鎳基超合金之材料相關知識”銲接園地, pp. 31-40, 2000.
14. 陳永璋、陳建銘,“鎳基合金之特性與其銲接方法, pp. 13-26, 2000.
15. G. A. Osinkolu, “Fatigue Crack Growth in Polycrystalline IN718 Superalloys”, Materials Science and Engineering, pp.425-433, 2003.
16. C.P. Sullovan, “Some Effect of Microstructure on the Mechanical Properties of Nickel Base Superalloys”, Source Book on Materials for Elevated-Temperature Applications ASM, pp.250-259, 1979.
17. G. Appa Rao, “Effect of Standard Heat Treatment on the Microstructure and Mechanical Properties of Hot Isostatically Pressed Superalloy inconel 718”, Materials Science and Engineering, pp.114-125, 2003.
18. M.K. Miller, “Intragranular Precipitation in Alloy 718”, Material Science and Engineering, pp.14-18, 1998.
19. R. D. Curran, L. Seaman and D. A. Shockey, “Linking Dynamic Fracture to Microstructural Process, Shock Wave and High-Strain-Rate Phenomena in Metal: Concepts and Applications,” pp. 129-167, 1980.
20. U. S. Lindholm, “Measurement of Mechanical Properties,” Techniques of Metals Research, Vol. 5, pp. 199-271, 1971.
21. U. S. Lindholm and L. W. Yeakly, “High Strain Rate Tension and Compression,” Exp. Mech., Vol. 3, pp. 81-88, 1983.
22. W. S. Lee and C. F. Lin, “Plastic Deformation and Fracture Behaviour of Ti-6Al-4V Alloy Loaded with High Strain Rate under Various Temperatures,” Materials Science and Engineering A, Vol. 241, pp. 48-59, 1998.
23. J. D. Campbell, “Dynamic Plasticity : Macroscopic and Microscopic Aspects,” Mat. Sci. Eng., Vol. 12, pp. 3-21, 1973.
24. D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.
25. J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” Phil. Mag., Vol. 21, pp. 63-82, 1970.
26. A. Seeger, “Dislocation and Mechanical Properties of Crystals,” Phil. Mag., Vol. 46, pp. 1194-1217, 1955.
27. U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” J. Mech. Phys. Solids, Vol. 13, pp. 41-49, 1965.
28. W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates,” Journal of Applied Physics, Vol. 38, pp. 1863-1869, 1967.
29. J. D. Campbell and A. R. Dowling, “The Behaviour of Materials Subjected to Dynamic Incremental Shear Loading,” Journal of Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.
30. Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, pp. 104-124, 1992.
31. Z. Gronostajski, “The Constitutive Equations for FEM Analysis,” Journal of Materials Processing Technology, Vol. 106, pp. 40-44, 2000.
32. P. Ludwik, Elementte der Technologischen Mechanik, Springer Verlag, Berlin, pp. 32, 1909.
33. L. E. Malvern, “The Propagation of Longitudinal Waves of Plastic Deformation in a Bar of Material Exhibiting Strain Rate Effect,” J Appl. Mech., Vol. 18, pp. 203-208, 1951.
34. L. W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. P. Staudhammer, “A Basic Approach for Strain Rate Dependent Energy Conversion Including Heat Transfer Effects : An Experimental and Numerical Study,” Journal of Materials Processing Technology, Vol. 182, pp. 319-326, 2007.
35. T. Vinh, M. Atzali and A. Roche, “Fast Fracture of Some Usual Metals at Combined High Strain and High Strain Rate,” Mechanical Behavior of Materials, pp. 633-642, 1979.
36. J. Duffy, Proc. Workshop on Shear Localization, Brown Univ. Report MRL-E-127, pp. 19-29, 1981.
37. H. Kobayashi and B. Dodd, “A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth,”International Journal of Impact Engineering, Vol. 8, pp. 1-13, 1989.
38. H. Kobayashi and B. Dodd, “Formation of Adiabatic Shear Band in Steel and Titanium at Dynamic Rates,” J. Japan Soc. Tech. Plasticity, Vol. 29, pp. 1152-1158, 1988.
39. F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,” Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
40. D. Umbrello, R. M’Saoubi and J. C. Outeiro, “The Influence of Johnson-Cook Material Constants on Finite Element Simulation of Machining of AISI 316L Steel,”International Journal of Machine Tools & Manufacture, Vol. 47, pp. 462-470, 2007.
41. U. R. Andrade, M. A. Meyers and A. H. Chokshi, “Constitutive Description of Work- and Shock-Hardened Copper,” Scripta Metallurgica et Materialia, Vol. 30, No. 7, pp. 933-938, 1994.
42. G. R. Johnson and W. H. Cook, “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rate and High Temperatures,” Proceedings of Seventh International Symposium on Ballistics, pp. 541, 1983.
43. T. J. Holmquist and G. R. Johnson “Determination of Constants and Comparison of Results for Various Constitutive Models,” J. Phys. Ⅲ, Vol. 1, pp. 853-860, 1991.
44. L. Shi and D. O. Northwood, “The Mechanical Behavior of an AISI Type 310 Stainless Steel,”Acta Metallurgica et Materialia, Vol. 43, pp. 453-460, 1995.
45. W. S. Lee and C. Y. Liu, “Comparison of Dynamic Compressive Flow Behavior of Mild and Medium Steels over Wide Temperature Range,” Metallurgical and Materials Transactions A, Vol. 36, pp. 3175-3186, 2005.
46. R. W. K. Honeycombe, The Plastic Deformation of Metals, 2nd Edition, Edward Arnold, London, pp. 129-132, 1984.
47. M. A. Meyers and K. K. Chawla, Mechanical Metallurgy-Principles and Applications, Prentice-Hall, New Jersey, pp. 354-358, 1984.
48. R. K. Ham, “The Determination of Dislocation Densities in Thin Films,” Phil. Mag., Vol. 6, pp. 1183-1184, 1961.
49. Y. Tomota, P. Lukas, S. Harjo, J-H. Park, N. Tsuchida, D. Neov, “In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation,” Acta Materialia 51, pp. 819-830, 2003.
50. Saiganesh K. Iyer, Cliff J. Lissenden, “Multiaxial constitutive model accounting for the strength-differential in Inconel 718,” International Journal of Plasticity 19, pp. 2055-2081, 2003.
51. Sabita Ghosh, Sandip Yadav, Goutam Das, “Study of standard heat treatment on mechanical properties of Inconel 718 using ball indentation technique,” Materials Letters 62, pp. 2619-2622, 2008.
52. Pankaj Trivedi, David P. Field, Hasso Weiland, “Alloying effects on dislocation substructure evolution of aluminum alloys,” International Journal of Plasticity 20, pp. 459-476, 2004.
53. Ramkumar K. Oruganti, Ramaswamy Sivaramanivas, T.N. Karthik,
Vamshi Kommareddy, Bala Ramadurai, Baskaran Ganesan, Edward J. Nieters, Michael F. Gigliotti, Michael E. Keller, M.T. Shyamsunder, “Quantification of fatigue damage accumulation using non-linear ultrasound measurements,” International Journal of Fatigue 29, pp. 2032-2039, 2007.