| 研究生: |
李志傑 Li, Chih-Chieh |
|---|---|
| 論文名稱: |
修正型緩坡方程式計算波浪通過擾變地形之研究 A Study of Modified Mild-Slope Equation for Wave Propagation on Undulating Topography |
| 指導教授: |
許泰文
Hsu, Tai-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 緩坡方程式 、數值模式 、擾變地形 |
| 外文關鍵詞: | mild-slope equation, numerical model, undulating topography |
| 相關次數: | 點閱:191 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文中擬以Chandrasekera and Cheung(2001) 所提出之水深分佈函數為基礎,重新推導波浪通過擾變地形之緩坡方程式。所推導之緩坡方程式係由Laplace方程式結合邊界條件得知,其型式包含一組耦合之偏微分方程式。模式中的底床邊界條件係以泰勒展開式對底部邊界條件進行微小擾變量的近似展開。本文引用的水深分佈函數,在自由表面仍滿足線性物理的邊界條件,然在底床速度表現上則可表示水平方向與垂直方向上的速度分量,符合實際現象。當微小擾變參數 忽略時,本文之緩坡方程式可退化回Chandrasekera and Cheung(2001)之折繞射模式。藉由所推導之緩坡方程式,配合輻射邊界條件,建立數值模式來求解波浪通過擾變底床地形時之波高分佈、速度剖面及反射率變化情形。計算結果經與試驗值比較,呈現合理之一致性。本文模式並對波浪通過複合式擾變底床地形進行模擬,並且對傳統緩坡方程式、延伸型態緩坡方程式、演進型態緩坡方程式以及Chandrasekera and Cheung(2001)之折繞射模式之數值計算結果進行比較,結果顯示具高精度之優越性。
This thesis presents the methematical formulation, the numerical solution, and the validation of the modified mild-slope equation for undulating bottom. The model involves two decoupled governing equations derived from, respectively, the approximated seabed boundary condition and the Laplace equation, The depth function of Chandrasekera and Cheung (2001) was used to the integration of the modified mild-slope equation. The present approach correctly accounts for the vertical component of the seabed fluid velocity. The present model, which satisfies the approximate bottom boundrty condition, is more accurate in modelling have transformation over undulating bathymetry. The validity of the present model is examined by existing experimental data and compared with the extended mild-slope equation (EMSE, Kirby, 1986) and evolution equation of mild-slope equation(EEMSE, Hsu and Wen,2001). The applicability and accuracy of the proposed model is evaluated and discussed.
1.Biesel, F., “Study of Wave Propagation in Water of Gradually Varying Depth,” U.S. National Bureau of Standards, Gravity Waves, NBS Circular 521, pp. 243-253 (1952).
2.Berkhoff, J.C.W., “Computation of Combined Refraction-Diffraction,” Proceedings of Thirteenth International Coastal Engineering Conference, Canada, ASCE, pp. 471-490 (1972).
3.Chamberlain, P.G. and Porter, D., “The Modified Mild-Slope Equation,” Journal of Fluid Mechanics, Vol. 291, pp. 393-407 (1995).
4.Chandrasekera, C.N. and Cheung, K.F., “Extended Linear Refraction- Diffraction Model,” Journal of Waterway Port Coastal and Ocean Engineering, Vol. 123, pp. 280-286 (1997)
5.Chandrasekera, C.N. and Cheung, K.F., “Linear Refraction- Diffraction Model for Steep Bathymetry,” Journal of Waterway Port Coastal and Ocean Engineering, Vol. 127, pp. 161-170 (2001).
6.Chen, Y. Y., Yang, B. D., Tang, L. W., Ou, S. H. and Hsu, R. C., “Transformation of progressive waves propagating obliquely on gentle slope,” Journal Waterway Port, Coastal and Ocean Engineering, Vol. 130, pp.162-169 (2004),.
7.Davies, A. G. and Heathershaw, A. D., “Surface-Wave Propagation over Sinusoidally Varying Topography,” Journal of Fluid Mechanics, Vol. 144, pp. 419-443 (1984).
8.Guazzelli, E., Rey, V. and Belzons, M., “Higher-Order Bragg Reflection of Gravity Surface Wave by Periodic Beds,” Journal of Fluid Mechanics, Vol. 245, pp. 301-317 (1992).
9.Hsu, T.W. and Wen, C.C., “On Radiation Boundary Conditions and Wave Transformation Across Surf Zone,” China Ocean Engineering, Vol. 15, 405-416 (2001a).
10.Hsu, T.W. and Wen, C.C., “A Parabolic Equation Extended to Account for Rapidly Varying Topography,” Ocean Engineering, Vol. 28, pp. 1479-1498 (2001b).
11.Hsu, T. W., Wen, C. C., Ou., S. H., and Lin D. Y., (2005) “A Complementary Mild-Slope Equation,” Journal of Coastal Research. (2005/10 submitted)
12.Kirby, J.T., “A General Wave Equation for Waves over Rippled Beds,” Journal of Fluid Mechanics, Vol. 162, pp. 171-186 (1986b).
13.Li, B., “A Generalized Conjugate Gradient Model for the Mild Slope Equation,” Coastal Engineering, Vol. 23, pp. 215-225 (1994b).
14.Massel, S.R., “Extended Refraction-Diffraction Equation for Surface Waves,” Coastal Engineering, Vol. 19, pp. 97-126 (1993).
15.Porter, D. and Staziker, D.J., “Extensions of the Mild-Slope Equation,” Journal of Fluid Mechanics, Vol. 300, pp. 367-382 (1995).
16.Radder, A.C., “On the Parabolic Equation Method for Water Wave Propagation,” Journal of Fluid Mechanics, Vol. 95, No. 1, pp. 159-176 (1979).
17.Suh, K.D., Lee, C. and Part, W.S., “Time-Dependent Equations for Wave Propagation on Rapidly Varying Topography,” Coastal Engineering, Vol. 32, pp. 91-117 (1997).
18.Williams, R.G., Darbyshire, J. and Holmes, P., “Wave Refraction and Diffraction in a Caustic Region: A Numerical Solution and Experimental Validation,” Proceedings of Institute Civil Engineering, Vol. 69, No. 2, pp. 635-649 (1980).
19.Weiss, J.M., “Three-Dimensional Linear Solution for Wave Propagation with Sloping Bottom,” IEEE J. Oceanic Eng., Vol. 22, No. 2, pp. 203-210 (1997).
20.Yue, D. K. P., Chen, H. S., and Mei, C. C. (1976). “A hybrid element method for calculating three-dimensional water wave scattering. “Rep. No. 215,Ralph M. Parsons Lab., MIT, Cambridge, Mass.
21.Zhang, L., Kim, M.H., Zhang, J. and Edge, B.L., “Hybrid Model for Bragg Scattering of Water Waves by Steep Multiply-Sinusoidal Bars,” Journal of Coastal Research, Vol. 15, No. 2, pp. 486-495 (1999).
22.陳陽益,湯麟武,「平緩坡度底床上前進的表面波」,第十四屆海洋工程研討會論文集,新竹,pp. 1-22 (1992)。
23.陳陽益,「平緩坡度底床上前進的表面波」,第十九屆海洋工程研討會論文集,台中,pp. 112-121 (1997)。
24.陳陽益,張富東,「平緩坡度底床上前進波的試驗研究」,第二十一屆海洋工程研討會論文集,新竹,pp. 165-174 (1999)。
25.溫志中,許泰文,「修正緩坡方程式之研發」,第二十五屆全國力學會議,台中,pp. B193-B200 (2001)。
26.溫志中,「修正緩坡方程式之研發與應用」,國立成功大學水及海洋工程研究所博士論文,(2001)
27.楊炳達,陳陽益,湯麟武,歐善惠,「前進波列斜向傳遞於等緩坡度底床之研究(II)」, 第二十三屆海洋工程研討會論文集,台南,pp. 1-15 (2001)。