簡易檢索 / 詳目顯示

研究生: 阮原青海
Thanh, Hai Nguyen Nguyen
論文名稱: 醬油醱酵過程中微生物群落變化之研究
Investigation on the changes of microbial community in fermentation of soy sauce
指導教授: 蔣鎮宇
Chiang, Tzen-Yuh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 60
外文關鍵詞: soy sauce fermentation, metagenomics, microorganisms, 16S rRNA
相關次數: 點閱:118下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The history of soy sauce started from 2000 years ago during the Western Han Dynasty of China. Nowadays, soy sauce becomes a popular food worldwide. Most sauce manufacturing processes share a common principle including four main steps: preparation of raw materials, koji-making, mash fermentation, and sauce extraction. The microbial community in soy sauce and the enzyme activities are considered to be important for soy sauce flavor, taste, and color. However, how the microbial community changes and influence soy sauce flavors during fermentation is still unclear. Here, soy sauce of black soybean was made simultaneously in laboratory and factory. Samples were taken and investigated by 16S Metagenomics to elucidate the difference of the microbial composition from soy sauce made in different environments. Also, the changes of soy sauce microbiome during 6-month fermentation were monitored. Various bacterial genera such as Bacillus, Staphylococcus, Enterococcus, Lactococcus and fungal genera Aspergillus, Rhizopus, Penicillium have discovered. The comparison between laboratory fermentation and factory fermentation in different time points suggested that microbial communities are not similar in different fermentation conditions. In factory samples, Bacillus was predominant during the fermentation process. All laboratory samples contained Enterococcus, Lactococcus (LAB) contributed 36.89% of the population through the fermentation process. In conclusions, during the fermentation process, microorganisms affect the quality of soy sauce by their enzyme activities, and these enzyme activities transform to volatile fatty acids and aromatic compounds, which is contributed to the favor of final product.

    ABSTRACT I ACKNOWLEDGEMENTS II TABLE OF CONTENTS III LIST OF TABLES V LIST OF FIGURES VI CHAPTER ONE INTRODUCTION 7 1. Soy Sauce Fermentation. 7 2. Soy Sauce. 8 3. Black Soybean 9 4. Microorganism in Soy Sauce Fermentation 11 5. DNA molecular barcode 12 6. Metagenomics 13 7. Research Aim 14 CHAPTER TWO RESEARCH DESIGN AND METHODOLOGY 16 1. Sample Collection 16 2. DNA Extraction 16 3. Polymerase Chain Reaction (PCR) 17 4. DNA Purification 18 5. Ligation, transformation of cloning and pre-test of genetic data 19 6. DNA Enrichment 21 7. DNA Sequencing 21 8. Sequence reorganization, merging and normalization 22 9. Refraction analysis 23 10. Principal component analysis (PCA) 23 11. Core Microbiome 24 12. Species Diversity Analysis 24 CHAPTER THREE RESEARCH RESULTS AND DISCUSSION 25 1. Research Results 25 1.1 Taxonomic Assignments of Soy Sauce Microbiome 254 1.2 Changes in bacterial and fungal communities during the soy sauce fermentation 26 1.3 Changes in Bacterial Diversity during Soy Sauce Fermentation 27 2. Discussion 28 2.1 Microorganism Communities in Soy Sauce Fermentation 28 2.2 The dynamic changes in the composition of Bacteria and Fungi occur in Soy Sauce Fermentation 33 2.3 Difference between the microbial diversity of Factory and Laboratory soy sauce 34 CHAPTER FOUR CONCLUSION AND SUGGESTIONS 35 REFERENCES 36

    Aidoo, K. E., Rob Nout, M. J., & Sarkar, P. K. Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS Yeast Research, 6(1), 30-39. doi:10.1111/j.1567-1364.2005.00015. (2006).
    Aidoo, K. E., Smith, J. E., & Wood, B. J. Industrial aspects of soy sauce fermentations using Aspergillus. In The Genus Aspergillus (pp. 155-169): Springer. (1994).
    Amann, R. I., Ludwig, W., & Schleifer, K.-H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Mol. Biol. Rev., 59(1), 143-169. (1995).
    An, C., Kuda, T., Yazaki, T., Takahashi, H., & Kimura, B. Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal. Applied Microbiology and Biotechnology, 98(6), 2779-2787. (2014).
    Arndt, C. Information Measures: Information and Its Description in Science and Engineering: Springer Science & Business Media. (2012).
    Byun, J. S., Han, Y. S., & Lee, S. S. J. I. J. V. N. R. The effects of yellow soybean, black soybean, and sword bean on lipid levels and oxidative stress in ovariectomized rats. 80(2), 97-106. (2010).
    Chung, O. J. T. R., Government Information Office, Republic of China, Taiwan. A Sauce for All. (2010).
    Duc, P., Thy, D., & Tuan, T. Fungal species isolated from water and striped catfish (Pangasianodon hypophthalmus) farmed in earthen ponds in the Mekong Delta of Viet Nam. International Journal of Science, Engineering and Technology, 3(5), 1164-1171. (2015).
    Ensminger, M., Oldfield, J., & Heinemann, W. Feeds and nutrition.The Ensminger publishing company, 648 West Sierra Avenue. (1990).
    Fetriyuna, F. J. I. J. o. A. S., Engineering, & Technology, I. The potential of darmo black soybean varieties as an alternative of a promising food for future. 5(1), 44-46. (2015).
    Fisher, K., & Phillips, C. The ecology, epidemiology and virulence of Enterococcus. Microbiology, 155(6), 1749-1757. (2009).
    Fontana, C., Cocconcelli, P. S., & Vignolo, G. Monitoring the bacterial population dynamics during fermentation of artisanal Argentinean sausages. International Journal of Food Microbiology, 103(2), 131-142. (2005).
    Fox, G. E., Wisotzkey, J. D., & Jurtshuk JR, P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. International Journal of Systematic and Evolutionary Microbiology, 42(1), 166-170. (1992).
    Fukushima, D. Industrialization of fermented soy sauce production centering around Japanese shoyu. Food Science and Technology-New York-Marcel Dekker, 1-88. (2004).
    Ganesan, K., & Xu, B. J. N. A critical review on polyphenols and health benefits of black soybeans. 9(5), 455. (2017).
    Guan, L., Cho, K. H., & Lee, J.-H. Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiology, 28(1), 101-113. (2011).
    Hackstadt, A. J., & Hess, A. M. Filtering for increased power for microarray data analysis. BMC Bioinformatics, 10(1), 11. (2009).
    Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 5(10), R245-R249. (1998).
    Hirata, H., Kitamura, K., Saito, T., Kobayashi, R., Iwasaki, M., Yoshihara, A., . . . Nakamura, K. J. T. T. j. o. e. m. Association between dietary intake and bone mineral density in Japanese postmenopausal women: The Yokogoshi cohort study. 239(2), 95-101. (2016).
    Ho, S. C., Woo, J., Lam, S., Chen, Y., Sham, A., & Lau, J. J. O. I. Soy protein consumption and bone mass in early postmenopausal Chinese women. 14(10), 835-842. (2003).
    Hsu, S.-D., Tseng, Y.-T., Shrestha, S., Lin, Y.-L., Khaleel, A., Chou, C.-H., . . . Ho, S.-Y. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Research, 42(D1), D78-D85. (2014).
    Huang, T.-C., & Teng, D.-F. Soy sauce: manufacturing and biochemical changes. In Handbook of Food and Beverage Fermentation Technology (pp. 513-548): CRC Press. (2004).
    Janda, J. M., & Abbott, S. L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45(9), 2761-2764. (2007).
    Jung, J. Y., Chun, B. H., & Jeon, C. O. Chromohalobacter is a causing agent for the production of organic acids and putrescine during fermentation of ganjang, a Korean traditional soy sauce. Journal of Food Science, 80(12), M2853-M2859. (2015).
    Jung, J. Y., Lee, S. H., Lee, H. J., & Jeon, C. O. Microbial succession and metabolite changes during fermentation of saeu-jeot: traditional Korean salted seafood. Food Microbiology, 34(2), 360-368. (2013).
    Jung, J. Y., Lee, S. H., Lee, H. J., Seo, H.-Y., Park, W.-S., & Jeon, C. O. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. International Journal of Food Microbiology, 153(3), 378-387. (2012).
    Kandler, O. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49(3), 209-224. (1983).
    Kasemodel, M., Sakamoto, I., Varesche, M., & Rodrigues, V. Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit. Science of The Total Environment, 675, 367-379. (2019).
    Kato, T., Maeda, K., Kasuya, H., & Matsuda, T. Complete growth inhibition of Bacillus subtilis by nisin-producing lactococci in fermented soybeans. Bioscience, Biotechnology, and Biochemistry, 63(4), 642-647. (1999).
    Kim, M. J., Kwak, H. S., Jung, H. Y., & Kim, S. S. Microbial communities related to sensory attributes in Korean fermented soy bean paste (doenjang). Food Research International, 89, 724-732. (2016).
    Kim, T.-W., Lee, J.-H., Kim, S.-E., Park, M.-H., Chang, H. C., & Kim, H.-Y. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. International Journal of Food Microbiology, 131(2-3), 265-271. (2009).
    Köberl, M., Müller, H., Ramadan, E. M., & Berg, G. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One, 6(9), e24452. (2011).
    Lee, S. H., Jung, J. Y., & Jeon, C. O. Bacterial community dynamics and metabolite changes in myeolchi-aekjeot, a Korean traditional fermented fish sauce, during fermentation. International Journal of Food Microbiology, 203, 15-22. (2015).
    Leroy, F., & De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15(2), 67-78. (2004).
    Liang, Y., Pan, L., & Lin, Y. Analysis of extracellular proteins of Aspergillus oryzae grown on soy sauce koji. Bioscience, Biotechnology, and Biochemistry, 0812271225-0812271225. (2009).
    Liao, H.-F., Chen, Y.-J., & Yang, Y.-C. J. L. s. A novel polysaccharide of black soybean promotes myelopoiesis and reconstitutes bone marrow after 5-flurouracil-and irradiation-induced myelosuppression. 77(4), 400-413. (2005).
    M’hir, S., Minervini, F., Di Cagno, R., Chammem, N., & Hamdi, M. Technological, functional and safety aspects of Enterococci in fermented vegetable products: a mini-review. Annals of Microbiology, 62(2), 469-481. (2012).
    Mah, J.-H., Park, Y. K., Jin, Y. H., Lee, J.-H., & Hwang, H.-J. Bacterial production and control of biogenic amines in Asian fermented soybean foods. Foods, 8(2), 85. (2019).
    Nout, R. Quality, safety, biofunctionality and fermentation control in soya. In Advances in Fermented Foods and Beverages (pp. 409-434): Elsevier. (2015).
    Pihlanto, A., & Korhonen, H. Bioactive peptides from fermented foods and health promotion. In Advances in Fermented Foods and Beverages (pp. 39-74): Elsevier. (2015).
    Rahi, D., & Soni, S. Applications and commercial uses of microorganisms. Microbes: A Source of Energy in 21st Century. New India Publishing House, New Delhi, 69-126. (2007).
    Rattanachaikunsopon, P., & Phumkhachorn, P. Lactic acid bacteria: their antimicrobial compounds and their uses in food production. Annals of Biological Research, 1(4), 218-228. (2010).
    Savolainen, V., Cowan, R. S., Vogler, A. P., Roderick, G. K., & Lane, R. Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1805-1811. (2005).
    Schloss, P. D., & Westcott, S. L. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol., 77(10), 3219-3226. (2011).
    Steinkraus, K. African alkaline fermented foods and their relation to similar foods in other parts of the world. Traditional African Foods—Quality and Nutrition. Stockholm, Sweden: International Foundation for Science. P, 87-92. (1991).
    Sulaiman, J., Gan, H. M., Yin, W.-F., & Chan, K.-G. Microbial succession and the functional potential during the fermentation of Chinese soy sauce brine. Frontiers in Microbiology, 5, 556. (2014).
    Sun, L., Lee, D. E. M., Tan, W. J. K., Ranawana, D. V., Quek, Y. C. R., Goh, H. J., & Henry, C. J. Glycaemic index and glycaemic load of selected popular foods consumed in Southeast Asia. British Journal of Nutrition, 113(5), 843-848. (2015).
    Takahashi, R., Ohmori, R., Kiyose, C., Momiyama, Y., Ohsuzu, F., Kondo, K. J. J. o. A., & Chemistry, F. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. 53(11), 4578-4582. (2005).
    Takano, Y., Shi, D., Shimizu, A., Funayama, T., Mashima, Y., Yasuda, N., . . . Zheng, X. Association of Toll-like receptor 4 gene polymorphisms in Japanese subjects with primary open-angle, normal-tension, and exfoliation glaucoma. American Journal of Ophthalmology, 154(5), 825-832. e821. (2012).
    Tanaka, Y., Watanabe, J., & Mogi, Y. Monitoring of the microbial communities involved in the soy sauce manufacturing process by PCR-denaturing gradient gel electrophoresis. Food Microbiology, 31(1), 100-106. (2012).
    Tanasupawat, S., Thongsanit, J., Okada, S., & Komagata, K. Lactic acid bacteria isolated from soy sauce mash in Thailand. The Journal of General and Applied Microbiology, 48(4), 201-209. (2002).
    Tang, J., Tang, X., Tang, M., Zhang, X., Xu, X., & Yi, Y. Analysis of the bacterial communities in two liquors of soy sauce aroma as revealed by high-throughput sequencing of the 16S rRNA V4 hypervariable region. BioMed Research International, 2017. (2017).
    Tiquia, S. M. Microbiological parameters as indicators of compost maturity. Journal of Applied Microbiology, 99(4), 816-828. (2005).
    Toida, J., Fukuzawa, M., Kobayashi, G., Ito, K., & Sekiguchi, J. Cloning and sequencing of the triacylglycerol lipase gene of Aspergillus oryzae and its expression in Escherichia coli. FEMS Microbiology Letters, 189(2), 159-164. (2000).
    Toyokawa, Y., Takahara, H., Reungsang, A., Fukuta, M., Hachimine, Y., Tachibana, S., & Yasuda, M. Purification and characterization of a halotolerant serine proteinase from thermotolerant Bacillus licheniformis RKK-04 isolated from Thai fish sauce. Applied Microbiology and Biotechnology, 86(6), 1867-1875. (2010).
    Tran, G. D., Sun, X. D., Abnet, C. C., Fan, J. H., Dawsey, S. M., Dong, Z. W., . . . Taylor, P. R. Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. International Journal of Cancer, 113(3), 456-463. (2005).
    Turnbaugh, P. J., & Gordon, J. I. An invitation to the marriage of metagenomics and metabolomics. Cell, 134(5), 708-713. (2008).
    Vazquez, B. I., Fente, C., Franco, C., Vazquez, M., & Cepeda, A. Inhibitory effects of eugenol and thymol on Penicillium citrinum strains in culture media and cheese. International Journal of Food Microbiology, 67(1-2), 157-163. (2001).
    Wang, Y., & Qian, P.-Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One, 4(10), e7401. (2009).
    Watts, G. S., Youens‐Clark, K., Slepian, M. J., Wolk, D., Oshiro, M., Metzger, G., . . . Hurwitz, B. L. 16S rRNA gene sequencing on a benchtop sequencer: accuracy for identification of clinically important bacteria. Journal of Applied Microbiology, 123(6), 1584-1596. (2017).
    Wei, C.-L., Chao, S.-H., Tsai, W.-B., Lee, P.-S., Tsau, N.-H., Chen, J.-S., . . . Tsai, Y.-C. Analysis of bacterial diversity during the fermentation of inyu, a high-temperature fermented soy sauce, using nested PCR-denaturing gradient gel electrophoresis and the plate count method. Food Microbiology, 33(2), 252-261. (2013).
    Xu, B., Chang, S. K. J. J. o. A., & Chemistry, F. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. 56(18), 8365-8373. (2008).
    Yokotsuka, T., & Sasaki, M. Fermented protein foods in the Orient: shoyu and miso in Japan. In Microbiology of Fermented Foods (pp. 351-415): Springer. (1998).
    Yongsawatdigul, J., Rodtong, S., & Raksakulthai, N. Acceleration of Thai fish sauce fermentation using proteinases and bacterial starter cultures. Journal of Food Science, 72(9), M382-M390. (2007).
    Yoon, Y., Lee, Y. M., Song, S., Lee, Y. Y., Yeum, K. J. J. F. S., & Nutrition. Black soybeans protect human keratinocytes from oxidative stress‐induced cell death. 6(8), 2423-2430. (2018).
    Zaman, M. Z., Bakar, F. A., Jinap, S., & Bakar, J. Novel starter cultures to inhibit biogenic amines accumulation during fish sauce fermentation. International Journal of Food Microbiology, 145(1), 84-91. (2011).
    Zhao, G., Yao, Y., Wang, C., Hou, L., & Cao, X. Comparative genomic analysis of Aspergillus oryzae strains 3.042 and RIB40 for soy sauce fermentation. International Journal of Food Microbiology, 164(2-3), 148-154. (2013).
    Zhao, G., Yao, Y., Wang, C., Tian, F., Liu, X., Hou, L., . . . Cao, X. Transcriptome and proteome expression analysis of the metabolism of amino acids by the fungus Aspergillus oryzae in fermented soy sauce. BioMed Research International. (2015).
    Zhao, J., Dai, X., Liu, X., Chen, H., Tang, J., Zhang, H., & Chen, W. Changes in microbial community during Chinese traditional soybean paste fermentation. International Journal of Food Science & Technology, 44(12), 2526-2530. (2009).

    下載圖示 校內:2019-09-06公開
    校外:2019-09-09公開
    QR CODE