簡易檢索 / 詳目顯示

研究生: 莊于臻
Chuang, Yu-Chen
論文名稱: 以不變量原理達成三波導分光/耦合器
Fast Three-Waveguide Beam Splitter/Coupler based on Invariant Engineering
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 101
中文關鍵詞: 波導三波導耦合
外文關鍵詞: waveguide, three-waveguide directional coupler
相關次數: 點閱:109下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們以Lewis-Riesenfeld 不變量算符逆向操作法,在三波導上,成功地將光從一根波導輸入轉成從另外一根波導輸出達成波導間的能量轉換,並且模擬在不同的路徑下的轉換效果加以分析比較。另外,從用來表達出口端能量大小的已知數學形式中,設計不同出口端的能量分割比例,利用光束傳播法來模擬成功地達成能量的分割。最後,利用特定的耦合波導結構,做出量子阿達馬閘。

    We propose fast beam coupling in a three waveguide directional coupler based on Lewis-Riesebfeld invariant theory. The design of beam power converter/splitter using the dynamical invariant is discussed. We use the closed form expressions for the modal power at the ouput for converter/splitter to design various approaches and simulate by beam propagation method in a three waveguide system. We successfully transfer/split power form one waveguide to another or the others in different designed paths. Besides, we use a specific waveguide system to create a quantum Hardamard gate.

    摘要 i Abstract ii 致謝 iii Table of Contents iv List of Figures vi Chapter 1 Introduction 1 Chapter 2 Fundamentals of Optical Waveguides 2 2.1 Wave theory of optical waveguides 2 2.2 Effective index method 5 2.3 Coupled mode theory 8 2.3.1 Codirectional couplers 15 2.3.2 Coupling Coefficients for Slab Waveguides 18 Chapter 3 Analogy between Waveguide Optics and Quantum Theory 20 3.1 The adiabatic three-level system in quantum theory 20 3.2 Lewis-Riesenfeld invariant theory 26 3.3 Similarity between waveguide optics and quantum mechanics 33 Chapter 4 Simulation Results and Discussion 36 4.1 Coupled mode equations based on invariant theory 38 4.1.1 One to one by coupled mode theory 41 4.1.2 One to two by coupled mode theory 45 4.1.3 One to three by coupled mode theory 50 4.1.4 Arbitrary split ratios by coupled mode theory 55 4.2 BPM Simulation results 60 4.2.1 One to one by BPM 62 4.2.1.1 Bandwidth Analysis 65 4.2.2 One to two by BPM 69 4.2.3 One to three by BPM 73 4.2.4 Arbitrary split ratios 78 4.2.5 Hadamard Gate 83 Chapter 5 Conclusion 90 Reference 91 Appendix 94 Appendix A 94 Appendix B 96 Appendix C 98 Appendix D 100

    [1] O. Katsunari (2006), "Fundamentals of optical waveguides", (2end ed), AMSETERDAM, Elsevier Inc.
    [2] X. Chen and J. G. Muga (2012), 'Engineering of fast population transfer in three-level systems,' Physical Review A, vol. 86, no. 3, pp. 033405.
    [3] V.M. Schneider and H.T. Hattori (2000), 'High-tolerance power splitting in symmetric triple-mode evolution couplers,' Journal of Quantum Electronics, IEEE, vol. 36, no. 8, pp. 923-930.
    [4] A.M. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev (2001), 'Non-evanescent adiabatic directional coupler', Journal of Quantum Electronics, IEEE, vol. 37, no. 10, pp. 1321-1328.
    [5] S.Y. Tseng and Y.W. Jhang (2013), 'Fast and Robust Beam Coupling in a Three Waveguide Directional Coupler,' Photonics Technology Letters, IEEE, vol. 25, no. 24, pp. 2478-2481.
    [6] H.S. Hristova, A. A. Rangelov, S. Guérin, and N. V. Vitanov (2013), 'Adiabatic evolution of light in an array of parallel curved optical waveguides,' Physical Review A, vol. 88, no. 1, pp. 013808.
    [7] E. Paspalakis (2006), "Adiabatic three-waveguide directional coupler," Optics Communications, vol. 258, no. 1, pp. 30-34.
    [8] K. Bergmann, H. Theuer, and B. W. Shore (1998), "Coherent population transfer among quantum states of atoms and molecules,' Reviews of Modern Physics, vol. 70, no. 3, pp. 1003-1025.
    [9] X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga (2010), "Shortcut to Adiabatic Passage in Two- and Three-Level Atoms,' Physical Review Letters, vol. 105, no. 12, pp. 123003.
    [10] X. Chen, E. Torrontegui, and J. G. Muga (2011), "Lewis-Riesenfeld invariants and transitionless quantum driving,' Physical Review A, vol. 83, no. 3, pp. 062116.
    [11] D. Loss and D.P. Divincenzo (1998),'Quantum computation with quantum dots.' Physical Review A, vol. 57, no. 1, pp.120-126.
    [12] S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta (2007), 'Coherent tunneling by adiabatic passage in an optical waveguide system,' Physical Review B, vol. 76, no. 20, pp. 201101.
    [13] H. R. Lewis (1969), "An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field", Journal of Mathematical Physics, vol. 10, no. 8, pp. 1458.
    [14] C. E. Carroll and F. T. Hioe (1988), "Three-state systems driven by resonant optical pulses of different shapes,' Journal of the Optical Society of America B, vol. 5, no. 6, pp. 1335-1340.
    [15] N.A. Gershenfeld and I.L. Chuang (1997), 'Bulk Spin-Resonance Quantum Computation,' Science , vol. 275, no. 5298, pp. 350-356.
    [16] A. Shnirman, G. Schön, and Z. Hermon (1997), 'Quantum Manipulations of Small Josephson Junctions,' Physical Review Letters, vol. 79, no. 12, pp. 2371-2374.
    [17] J.I. Cirac and P. Zoller (1995), 'Quantum Computations with Cold Trapped Ions,' Physical Review Letters, vol. 74, no. 20, pp. 4091-4094.
    [18] S. Sajeed, A. Ahmed, S. M. Ullah, and Z. H. Mozumder (2010), ' An approach to realize a quantum Hadamard gate through optical implementation,' in Electro/Information Technology (EIT), 2010 IEEE International Conference on.
    [19] W. Jie, C. Shuang, and Z. Xubo (2012), 'Realization of quantum hadamard gate based on Lyapunov method,' in Intelligent Control and Automation (WCICA), 2012 10th World Congress on.
    [20] S.O. Kasap (2001), 'Optoelectronics and Photonics: Principles and Practices,' (1st ed), USA, Prentice Hall.

    下載圖示 校內:2019-08-25公開
    校外:2019-08-25公開
    QR CODE