| 研究生: |
鄭益佳 Cheng, Yi-Chia |
|---|---|
| 論文名稱: |
針對新穎的ALK融合基因SPECC1L-ALK進行功能性的研究 Functional studies of a novel ALK fusion gene SPECC1L-ALK |
| 指導教授: |
何中良
Ho, Chung-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | ALK 、HEK293 、Kinase inhibitor |
| 外文關鍵詞: | ALK, HEK293, Kinase inhibitor |
| 相關次數: | 點閱:87 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來的研究發現到在非小細胞肺癌病患的檢體中有越來越多新的融合基因被診斷出來,例如EML4-ALK融合基因佔肺小細胞肺癌約5~8%。於是本實驗室也想從非小細胞肺癌病患的檢體之中能否發現到新的融合基因。在實驗室先前的研究之中,我們透過多種分子檢測方式(IHC、FISH、RT-PCR、RACE)從100多例非小細胞肺癌病人的蠟塊檢體之中發現到1例新穎的ALK融合基因,5’端為Sperm Antigen With Calponin Homology And Coiled-Coil Domains 1-Like (SPECC1L) 與3’端為Anaplastic Lymphoma Kinase (ALK) 融合所形成的SPECC1L-ALK,所以本篇研究主要想探討新穎ALK融合基因是否在細胞株中與臨床所常見的EML4-ALK基因的生物特性是否相似,另外也會去比較新穎的融合基因SPECC1L-ALK和EML4-ALK融合基因在細胞株之中對於Tyrosine kinase inhibitor (TKI) 治療功效是否有所不同,由本篇實驗數據得知,新穎的融合基因SPECC1L-ALK和EML4-ALK皆能促進細胞增生,細胞侵襲/遷移和上皮-間質轉化(EMT)。在ALK TKI 處理48小時後進行WST-1和Colony formation實驗,研究得知,經過藥物處理後的ALK-rearranged cell的細胞存活率會降低。綜合上述研究結果,新穎的ALK融合基因SPECC1L-ALK生物特性與其ALK常見融合基因EML4-ALK相似,但在藥物敏感性實驗方面,HEK293-EML4-ALK比HEK293-SPECC1L-ALK稍敏感,至於此新穎的融合基因是否在臨床上有明顯的臨床意義,我們需要進一步去探討。
A fusion gene, echinoderm microtubule associated protein like 4 – anaplastic lymphoma kinase (EML4-ALK), with transforming activity has recently been identified in 5~8 % of non-small cell lung cancer (NSCLC). Previously in our laboratory, a novel ALK gene fusion partner, Sperm Antigen with Calponin Homology and Coiled-Coil Domains 1-Like (SPECC1L) was found in a patient with NSCLC through 5’-RACE, which was confirmed by RT-PCR, sequencing and FISH. The aim of this study is to establish SPECC1L-ALK as an oncogenic ALK aberration which is a candidate for targeted therapy. Stable cell pools expressing SPECC1L-ALK, EML4-ALK, or wild-type SPECC1L were prepared. Western blotting revealed that the corresponding gene products were at the predicted molecular weights. Next, the novel SPECC1L-ALK fusion gene was subjected to a series of experiments to determine its oncogenic characteristics, along with the well-known EML4-ALK fusion as a comparison. The results show that HEK293-SPECC1L-ALK and HEK293-EML4-ALK similarly increased the cell proliferation, cell migration/invasion, and epithelial mesenchymal transition (EMT) by activating the ALK downstream signaling pathway. There are several tyrosine kinase inhibitor (TKI) available for the treatment of NSCLC harboring ALK fusion genes, such as crizotinib. Their efficacies against SPECC1L-ALK and EML4-ALK were compared using a cellular model. The results revealed that crizotinib can inhibit the cell growth and cell survival in ALK-rearranged HEK293 cell.In summary, SPECCL-ALK was a novel ALK fusion gene similar to EML4-ALK. However, SPECC1L-ALK seemed to be less sensitive to crizotinib as compared to EML4-ALK in the HEK293 cell model. Its clinical significance needs further investigation.
1. Morris, S.W., et al., Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science, 1994. 263(5151): p. 1281-4.
2. Iwahara, T., et al., Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene, 1997. 14(4): p. 439-49.
3. Hallberg, B. and R.H. Palmer, Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer, 2013. 13(10): p. 685-700.
4. Ferreri, A.J., et al., Anaplastic large cell lymphoma, ALK-positive. Crit Rev Oncol Hematol, 2012. 83(2): p. 293-302.
5. 廖唯昱, 施金元, and 余忠仁, "ALK"(anaplastic lymphoma kinase)抑制劑在有"ALK"融合蛋白表現肺癌病人的治療. 台灣醫學, 2014. 18(6): p. 661-666.
6. Chen, Y., et al., Oncogenic mutations of ALK kinase in neuroblastoma. Nature, 2008. 455(7215): p. 971-4.
7. Hernandez, L., et al., TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood, 1999. 94(9): p. 3265-8.
8. Takeuchi, K., et al., KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res, 2009. 15(9): p. 3143-9.
9. Perner, S., et al., EML4-ALK fusion lung cancer: a rare acquired event. Neoplasia, 2008. 10(3): p. 298-302.
10. Aisner, D.L., et al., ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral heterogeneity for molecular drivers. Mol Cancer Res, 2014. 12(1): p. 111-8.
11. Soda, M., et al., Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 2007. 448(7153): p. 561-6.
12. Wong, D.W., et al., The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer, 2009. 115(8): p. 1723-33.
13. Shaw, A.T., et al., Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol, 2009. 27(26): p. 4247-53.
14. Boland, J.M., et al., Anaplastic lymphoma kinase immunoreactivity correlates with ALK gene rearrangement and transcriptional up-regulation in non-small cell lung carcinomas. Hum Pathol, 2009. 40(8): p. 1152-8.
15. Koivunen, J.P., et al., EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res, 2008. 14(13): p. 4275-83.
16. Shaw, A.T. and B. Solomon, Targeting anaplastic lymphoma kinase in lung cancer. Clin Cancer Res, 2011. 17(8): p. 2081-6.
17. Lindeman, N.I., et al., Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch Pathol Lab Med, 2013. 137(6): p. 828-60.
18. Liu, L., et al., Detection of EML4-ALK in lung adenocarcinoma using pleural effusion with FISH, IHC, and RT-PCR methods. PLoS One, 2015. 10(3): p. e0117032.
19. Takeuchi, K., et al., Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res, 2008. 14(20): p. 6618-24.
20. Frohman, M.A., M.K. Dush, and G.R. Martin, Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A, 1988. 85(23): p. 8998-9002.
21. Christensen, J.G., et al., Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther, 2007. 6(12 Pt 1): p. 3314-22.
22. Shaw, A.T. and J.A. Engelman, ALK in lung cancer: past, present, and future. J Clin Oncol, 2013. 31(8): p. 1105-11.
23. Cho, S.Y. and R.L. Klemke, Extracellular-regulated kinase activation and CAS/Crk coupling regulate cell migration and suppress apoptosis during invasion of the extracellular matrix. J Cell Biol, 2000. 149(1): p. 223-36.
24. Nagase, H. and J.F. Woessner, Jr., Matrix metalloproteinases. J Biol Chem, 1999. 274(31): p. 21491-4.
25. Johnson, G.L. and R. Lapadat, Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002. 298(5600): p. 1911-2.
26. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
27. Junghans, D., I.G. Haas, and R. Kemler, Mammalian cadherins and protocadherins: about cell death, synapses and processing. Curr Opin Cell Biol, 2005. 17(5): p. 446-52.
28. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90.
29. Wu, Y. and B.P. Zhou, New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochim Biophys Sin (Shanghai), 2008. 40(7): p. 643-50.
30. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96.
31. Nabeshima, K., et al., Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int, 2002. 52(4): p. 255-64.
32. Porta, C., C. Paglino, and A. Mosca, Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol, 2014. 4: p. 64.
33. von der Mark, K., S. Schober, and S.L. Goodman, Integrins in cell migration. Methods Mol Biol, 1999. 129: p. 219-30.
34. Herceg, Z. and Z.Q. Wang, Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res, 2001. 477(1-2): p. 97-110.