簡易檢索 / 詳目顯示

研究生: 王詩涵
Wang, Shih-Han
論文名稱: 微製造技術應用於鈣離子感測器及 奈米氧化鎢二氧化氮感測器
Development of a Calcium Ion-Selective Sensor and a Nano-crystalline Tungsten Oxide NO2 Sensor Using Microfabrication Techniques
指導教授: 周澤川
Chou, Tse-Chuan
劉炯權
Liu, Chung-Chiun
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 119
中文關鍵詞: 微製造技術鈣離子感測器奈米氧化鎢二氧化氮感測器
外文關鍵詞: Calcium Sensor, Nano-crystalline, NO2 Sensor
相關次數: 點閱:119下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是微製造技術在化學感測器上之研究,依照感測器製造的製程大致可以分成三個部分。首先針對於改善傳統離子選擇性電極因為其電極構造所造成其應用上之限制的問題,因此選擇了薄膜塗附式的離子選擇性感測器作為研究的對象,接著利用厚膜的製程研發一簡單結構的鈣離子感測器。又應用薄膜的製程探討多孔性奈米結晶氧化鎢為主的二氧化氮感測器之感測行為。
    簡單結構的薄膜塗附式鈣離子選擇性感測器是利用固定離子載子及蒙脫土於高分子膜作為鈣離子選擇性薄膜,有無蒙脫土改質的鈣離子感測器皆被研究之。鈣離子感測器是一種電位式的感測器,利用改變不同的離子濃度偵測其所得之電位的變化。由實驗結果得知,有蒙脫土改質的鈣離子感測器感測效果皆較未改質過的感測器佳,其電位對濃度的線性範圍落在鈣離子濃度為10-6 至10-1 M之間,此外,經蒙脫土改質過的鈣離子感測器無論敏感度,重複性,穩定性等皆較未改質過的感測器為佳,最佳的蒙脫土添加量為24.8 %重量百分比。
    薄膜塗附式離子感測器是應用厚膜的製程所得之研究,將鈣離子載子(ETH129)固定至矽膠或光阻內作為選擇性薄膜。在經10-7 M氯化鈣處理過之蒙脫土所改質之選擇性薄膜所得之平衡關係為超能斯特之關係,利用10-1 M氯化鈣處理過之蒙脫土所改質之離子選擇性薄膜將此現象所抑制,並利用將薄膜含浸於0.1 M氯化鈣以減低薄膜離子濃度記憶的效應,並利用光阻劑為主之薄膜將整個製程簡單化。此外,更利用加入一內層電解質將整個感測極限由10-6 M降為10-9 M。
    在薄膜二氧化氮感測器的部分,所研發的二氧化氮感測器之偵測範圍可達ppb濃度,此感測器是利用溶膠-凝膠法製得之奈米氧化鎢為感測薄膜,不同燒結溫度所得薄膜之性質及其於不同之操作溫度下對二氧化氮之感測效果皆被研究。二氧化氮於氧化鎢薄膜上之吸附行為及其性質皆利用XPS探討之,在經550℃燒結之純氧化鎢薄膜於300℃操做溫度下可得最佳的偵測結果,經由添加矽化物經650℃燒結後之氧化鎢薄膜於200℃操做溫度下可得最佳的偵測結果,將整個元件能量耗損量大幅度的降低。

    This dissertation is divided into three parts by the sensor fabrication process. In order to replace the sophistical structure of conventional ion-selective electrode by a simple structured electrode, coated wire ion-selective electrode was investigated studied. Utilizing thick film techniques, a simple structured calcium ion-selective electrode was developed. Sensitive porous tungsten oxide nano-crystalline based NO2 sensor was fabricated using thin film fabrication process.
    Simple structured coated wire calcium ion-selective electrode was studied by combining immobilization of ionophore and montomorillonite into a polymer membrane. Two types of electrodes, which were with and without montmorillonite-modified prepared to detect calcium ion concentrations were also compared. The potentiometry was used to test the calcium sensors by step change of calcium ion concentration. The results indicated that the montmorillonite–modified electrode exhibited higher performance than that without montmorillonite modified. The relationship between the potential and calcium ion concentration was obtained and the testing range of calcium ion concentration was determined to be from 10-6 to 10-1 M. The results revealed that the sensitivity, repeatability and stability of electrodes with or without montmorillonite modified were better than that without montmorillonite modified electrode. The interference of magnesium and potassium ions was investigated. The montmorillonite-modified electrode also showed a higher selectivity to calcium ion than that without montmorillonite modified electrode. The optimal amount of the modified montmorillonite was 24.8 wt %.
    Coated wire calcium ion-selective sensors were developed using thick film metallization process. Silicone rubber or photoresist was combined with ionophore (ETH 129) forming calcium ion-selective membranes which were coated onto different surfaces of electrode. Super-Nernstian equilibrium relationship between the phase boundary potentials and calcium ion concentrations was observed in the silicone rubber-based membrane that was doped with 10-7 M CaCl2 treated montmorillonite. This equilibrium relationship was eliminated when the membrane was doped with 0.1 M CaCl2 treated montmorillonite. The use of photoresist simplified the manufacturing process for the membrane. The memory effect of the silicone rubber based membrane could be eliminated when the membrane was conditioned with 0.1 M CaCl2. An inner-electrolyte containing ion-selective sensor was studied to improve the detection limit from 10-6 to 10-9 M
    The sensitivity of this NO2 sensor was at the parts per billion (ppb) level. The nano-crystalline porous tungsten oxide and silicate doped film was prepared from WCl6 by a sol-gel technique. The surface morphology and NO2 sensitivity of the tungsten oxide films calcined at various temperatures were investigated. The NO2 adsorption behavior on the tungsten oxide surface was carried out by XPS measurement. For the undoped tungsten oxide thin film, experimental results indicated that the tungsten oxide film calcined at 550 °C for one hour, and the optimal operational temperature of the sensor was 300 °C. For the doped tungsten oxide thin film, experimental results indicated that the tungsten oxide film calcined at 650 °C for one hour, and the optimal operational temperature of the sensor was 200 °C which was lower power consumption device.

    中文摘要 I Abstract III Acknowledgements V Table of Contents VI List of Tables IX List of Figures X Chapter 1 Introduction 1 1-1 Background and Motivation of This Dissertation 1 1-2 Scope 3 Chapter 2 Montmorillonite Modified Calcium Ion-Selective Sensors 5 2.1 Introduction to Polymeric Based Calcium Ion-Selective Electrodes 5 2.1.1 Introduction to Ion-Selective Electrodes 5 2.1.2 Response Mechanism of Polymeric Based Ion-Selective Electrodes 7 2.1.3 Ion-Selective Membranes 8 2.1.3.1 Neutral Carrier in Ion-Selective Membrane 9 2.1.3.2 Other Additives in Ion-Selective Membrane 10 2.1.4 Coated-Wire Ion-Selective Electrodes 12 2.2 Experimental Techniques 13 2.2.1 Preparation of the Ion-Selective Electrodes 13 2.2.1.1 Reagents 13 2.2.1.2 Fabrication and Assembly of the Ion-Selective Sensors 13 2.2.2 Characterization of the Ion-Selective Membranes 14 2.2.3 Evaluation of Montmorillonite Modified Calcium Ion-Selective Sensors 14 2.2.3.1 Potentiometric Response of the Montmorillonite Modified Calcium Ion-Selective Sensors 14 2.2.3.2 Selectivity Test 15 2.2.3.3 Repeatability Test 15 2.3 Valuation of The Montmorillonite Modified Ion-Selective Sensors 16 2.3.1Characterization of the Montmorillonite Modified Ion-Selective Membranes 16 2.3.2 Potentiometric Response of the Montmorillonite Modified Ion-Selective Sensors 17 2.3.2.1 Typical Potentiometric Response 17 2.3.2.2 Selectivity Test 18 2.3.2.3 Repeatability Test 19 Chapter 3 Thick Film Calcium Ion-Selective Sensor 36 3.1 Solid-State Calcium Ion-Selective Electrode Using Thick Film Technique 36 3.1.1 Thick Film Technique for Simple Structured Ion-Selective Electrode Preparation 36 3.1.2 Solid-State Ion-Selective Electrodes (ISEs) With Inner Electrolyte Layer For Low-Level Ion Concentration Measurements 38 3.2 Experimental Techniques of the Simple Structured Ion-Selective Sensors 39 3.2.1.1 Reagents and Materials 39 3.2.1.2 Sensor Design and Fabrication 40 3.2.2 The Tests of Simple Structured Thick Film Ion-Selective Electrodes 40 3.2.2.1 The Measurement System 40 3.3 Potentiometric Response of the Simple Structured Ion-Selective Sensors 41 3.3.1 Silicone Rubber-Based Calcium Ion-Selective Electrode 41 3.3.2 Montmorillonite-Modified Silicone Rubber-Based Calcium Ion-Selective Electrode 42 3.3.3 Photoresist-Based Calcium Ion-Selective Electrode 43 3.3.4 Selectivity Test 44 3.3.5 Repeatability Test 44 3.4 Experimental Techniques of Solid-State Ion-Selective Electrodes (ISEs) With an Inner Electrolyte Layer 46 3.4.1 Preparation of ISEs Having an Inner Electrolyte Layer 46 3.4.1.1 Reagents and Material 46 3.4.1.2 Sensor Design and Structure 46 3.4.2 The Tests of ISEs with Inner Electrolyte Layer 47 3.5 Evaluation of an ISE With Inner Electrolyte Layer 47 3.5.1 Characterization of the Inner Electrolyte Layer 47 3.5.2 Potentiometric Response of ISEs with an Inner Electrolyte Layer 48 3.5.3 Selectivity Test 48 3.5.4 Repeatability Test 49 Chapter 4 A Nano-Crystalline Tungsten Oxide NO2 Sensor 70 4.1 Introduction to a Metal Oxide Type Gas Sensor 70 4.1.2. Basic Requirements of Semiconducting Metal Oxide Gas Sensors 71 4.2 Previous Research Relating to No2 Sensors 71 4.3 Experimental Techniques - Tungsten Oxide Sensor 74 4.3.1 Sol-Gel Process for the Production of Tungsten Oxide Films 74 4.3.1.1 The Preparation of the Tungsten Oxide Sol-Gel Solution 74 4.3.1.2 Production of Tungsten Oxide Films 75 4.3.2 Structural Characterization and Chemical Analysis 76 4.3.3 Sensor Design and Fabrication 77 4.3.4 Sensitivity Measurement 78 4.3.5 Preparation of Silicate Doped Tungsten Oxide 78 4.4 An Undoped Tungsten Oxide NO2 Sensor 79 4.4.1 Structural Characterization and Chemical Analysis of Undoped Tungsten Oxide Thin Films 79 4.4.2 NO2 Response of the Undoped Tungsten Oxide NO2 Sensor 80 4.4.2.1 Effect of Calcination Temperature 80 4.4.2.2 Effect of Operating Temperature 82 4.4.3 Silicate Doped Tungsten Oxide NO2 Sensors 84 Chapter 5 Summery and Suggestions 110 5-1 Summery 110 5-2 Suggestions 111 References 114

    1. C. C. Liu, “ Development of Chemical Sensor Using Microfabrication and Micromachining Techniques”, Mater. Chem. Phys. 1995, 42, 87-90
    2. C. C. Liu and Z. Jin, “ Application of Microfabrication and Micromachining Techniques to Biotechnology”, TIBTECH 1997, 15, 213-216.
    3. H. Suzuki, “ Microfabrication of Chemical Sensors and Biosensors for Environmental Monitoring”, Mater. Sci. Eng. C 2000, 12, 55-61.
    4. H. H. Kerschbaum and M. D. Cahalan, “Single-Channel Recording of a Store-Operated Ca2+ Channel in Jurkat T Lymphocytes”, Science 1999, 283, 836-839.
    5. N. R. Carlson and M. Crompton, “ The regulation of intercellular calcium”, Curr. Topics Membr. Transp. 1978, 10, 151.
    6. D. Ammann, Ion-Selective Microelectrodes, Berlin,1986.
    7. Air Pollution Control Act., Environmental Protection Administration of the Republic of China on Taiwan, 1986.
    8. E. Bakker, P. Buhlmann and E. Pretsch, “Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics”, Chem. Rev. 1997, 97, 3083-3132.
    9. E. Bakker, P. Buhlmann and E. Pretsch, “Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors”, Chem Rev 1998, 98, 1593-1687.
    10. E. Bakker, D. Diamond, A. Lewenstam and E. Pretsch, “Ion Sensors: Current Limits and New Trends”, Anal. Chem. Acta 1999, 393, 11-18.
    11. E. Bakker and E. Pretsc, “ Potentiometry at Trace Levels”, Trends in Anal. Chem. 2001, 20, 11-19.
    12. U. Schefer, D. Ammann, E. Pretsch, U. Oesch, and W. Simon, “ Neutral Carrier Based Ca2+-Selective Electrodes”, Anal. Chem. 1986, 58, 2282-2285.
    13. E. Bakker E, R. K. Meruva, E. Pretsch and M. E. Meyerhof, “Selectivity of Polymer Membrane-Based Ion-Selective Electrodes - Self-Consistent Model Describing the Potentiometric Response in Mixed Ion Solutions of Different Charge”, Anal. Chem. 1994, 66, 3021.
    14. E. Bakker, “Lipophilicity of Tetra-phenylborate Derivatives as Aionic Sites in Neutral Carrier-Based Solvent Polymeric Membranes and Lifetime of Corresponding Ion-Selective Electrochemical and Optial Sensors”, Analytica Chemica Acta 1995, 309, 7.
    15. T.J. Cardwell, R.W. Cattrall, I.C. Hamilton, P.J. Iles, “Photo-Cured Polymers In Ion-Selective Electrode Membranes .3. A Potassium Electrode For Flow-Injection Analysis”, Anal. Chim. Acta 1988, 204, 329-332.
    16. T. Dimitrakopoulos, J.R. Farrel, P.J. Iles, “A Photo-Cured Calcium Ion-Selective Electrode For Use In Flow Injection Potentiometry That Tolerates High Perchlorate Levels”, Electroanal. 1996, 8, 391.
    17. G.S. Cha, D. Liu, M.E. Meyerhoff, H.C. Cantor, A.R. Midgley, H.D. Goldberg, R.B. Brown, “Electrochemical Performance, Biocompatibility, And Adhesion Of New Polymer Matrices For Solid-State Ion Sensors”, Anal. Chem. 1991, 63, 1666-1672.
    18. S.I. Wakida, M. Yamane, K. Higashi, K. Hiiro, Y. Ujihara, “Urushi Matrix Sodium, Potassium, Calcium And Chloride-Selective Field-Effect Transistors”, Sens. Actuators B 1990, 1, 412-415.
    19. P.W. Alexander, T. Dimitrakopolos, D.B. Hibbert, “A Photo-Cured Coated-Wire Calcium Ion Selective Electrode for Use in Flow Injection Potentiometry”, Talanta 1997, 44, 1397.
    20. R. W. Cattrall and H. Freiser, “Coated Wire Ion-Selective Electrodes”, Anal. Chem. 1971, 43, 1905-1906.
    21. R. W. Cattrall and I. C. Hamilton, “ Coated-Wire Ion-Selective Electrodes”, Ion-Selective Rev. 1984, 6, 125-172.
    22. W. E. Morf, M. Badertscher, T. Zwickl, N. F. Rooij, and E. Pretsch, “Effects of Ion Transport on the Potential Response of Ionophore-Based Membrane Electrodes: A Theoretical Approach”, J. Phys. Chem. B 1999, 103, 11346-11356.
    23. G.J. Moody, J.D.R. Thomas, and J.M. Slater, “Modified Polyvinyl-Chloride) Matrix Membranes for Ion-Selective Field-Effect Transistor Sensors”, Analyst, 1988,113, 1703-1707.
    24. G.S. Cha and R.B. Brown, “Polyimide-Matrix Chemical-Selective Membranes”, Sensors and Actuators B, 1990,1,281-285.
    25. G.S. Cha, D. Liu, M.E. Meyerhoff, H.C. Cantor, A.R. Midgley, H.D. Goldberg and R.B. Brown, “Electrochemical Performance, Biocompatibility, and Adhesion of New Polymer Matrices For Solid-State Ion Sensors”, Anal. Chem. 1991 ,63,1666-1672.
    26. D. Ammann, W.E. Morf, P. Anker, P. C. Meier, E.Pretsch and W. Simon, “Neutral Carrier Based Ion-Selective Electrodes”, Ion-Selective Electrode Rev.1983,5, 3-92.
    27. B. K. Oh, C. Y. Kim, H. J. Lee, K. L. Rho, G. S. Cha, and H. Nam, “One-Component Room Temperature Vulcanizing-Type Silicone Rubber Based Calcium-Selective Electrodes”, Anal. Chem. 1996, 68, 503-508.
    28. S. H. Wang and T.C. Chou, “Immobilized Ionophore Calcium Ion Sensor Modified by Montmorillonite”, Electroanal. 2000, 6, 468-470.
    29. P.W. Alexander, T. Dimitrakopoulos, and D.B. Hibbert, “A Photo-Cured Coated-Wire Calcium Ion Selective Electrode for Use in Flow Injection Potentiometry”, Talanta 1997, 44, 1397-1405.
    30. P.W. Alexander, T. Dimitrakopoulos, and D.B. Hibbert, “A Six Sensor Array of Coated-Wire Electrodes for Use in a Portable Flow Injection Analyzer”, Electroanal. 1998, 10, 707-712.
    31. E. Bakker, P. Buhlmann, E. Pretsch, “Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. General Characteristics”, Chem. Rev. 1998, 98, 1593.
    32. E. Bakker E, P. Buhlmann and E. Pretsch, “Polymer Membrane Ion-Selective Electrodes - What are the Limits”, Electroanal 1999, 11, 915.
    33. T. Sokalski, A. Ceresa, T. Zwickl and E. Pretsch, “Large Improvement ofthe Lower Detection Limit of Ion-Selective Polymer Membrane Electrodes”, J. Am. Chem. Soc. 1997,119, 11347-11348.
    34. E. Bakker, M. E. Meyerhoff, “Ionophore-Based Membrane Electrodes: Nnew Analytical Concepts and Non-classical Response Mmechanisms”, Analytica Chimica Acta 2000,416, 121–137.
    35. Yanming Mi, Sally Mathison, Roderick Goines, Alicia Logue, Eric Bakker, “Detection Limit of Polymeric Membrane Potentiometric Ion Sensors: How Can We Go Down to Trace Levels?”, Analytica Chimica Acta 1999,397,103–111.
    36. T. G. Nenov, and S.P. Yordanov, Ceramic Sensors-Technology and applications, Technomic Publishing, Lancaster, PA. 1996.
    37. H. Meixner, U. Lampe, Metal oxide sensors, Sens. Actuators, B, Chem 1996, 33 198-202.
    38. P.T. Moseley, Solid state gas sensors, Meas. Sci Technol. 8 (1997) 223-237.
    39. G. Lu, N. Miura, N. Yamazoe, Stabilized zirconia-based sensors using WO3 electrode for detection of NO or NO2, Sens. Actuators, B, Chem 2000, 65 125-127.
    40. S. Nakata, K. Shimanoe, N. Miura, N. Yamazoe, Field effect transistor type NO2 sensor combine with NaNO2 auxiliary phase, Sens. Actuators, B, Chem 1999, 60 49-56.
    41. N. Miura, M. Ono, K. Shimanoe, N. Yamazoe, A compact solid-state amperometric sensor for detection of NO2 in ppb range, Sens. Actuators, B, Chem. 1998, 49, 101-109.
    42. H. Steffes, C. Imawan, F. Solzbacher, E. Obermeier, “ Enhancement of NO2 sensing properties of In2O3-based thin film using an Au or Ti surface modification”, Sens. Actuators, B, Chem. 2001, 78, 106-112.
    43. M. Tong, G. Dai, Y. Wu, X. He, D. Gao, WO3 thin film prepared by PECVD technique and its gas sensing properties to NO2, J. Mater. Sci. 2001, 36, 2535-2538.
    44. D.S. Lee, J.W. Lim, S.M. Lee, J.S. Huh, D.D. Lee, Fabrication and characterization of micro-gas sensor for nitrogen oxide gas detection, Sens. Actuators, B, Chem. 2000, 64, 31-36.
    45. C. Cantalini, H.T. Sun, M. Faccio, M. Pelino, S. Santucci, L. Lozzi, M. Passacantando, NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation, Sens. Actuators, B, Chem. 1996, 60, 81-87.
    46. D.S. Lee, S.D. Han, S.M. Lee, J.S. Huh, D.D. Lee, The TiO2-adding effects in WO3-based NO2 sensors prepared by coprecipitation and precipitation method, Sens. Actuators, B, Chem. 2000, 65, 331-335.
    47. D.S. Lee, S.D. Han, J.S. Huh, D.D. Lee, Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor, Sens. Actuators, B, Chem 1999, 60, 57-63.
    48. Y.K. Chung, M.H. Kim, W.S. Um, H.S. Lee, J.K. Song, S.C. Choi, K.M. Yi, M.J. Lee, K.W. Chung, Gas sensing properties of WO3 thick film for NO2 gas dependent on process condition, Sens. Actuators, B, Chem. 1999, 60, 49-56.
    49. M.D. Giulio, G. Micocci, A. Serra, A. Tepore, Sputter deposition of tungsten oxide for gas sensing applications, J. Mater. Sci. 1998, 9, 317-322.
    50. C. Baratto, G. Faglia, E. Comini, G. Sberveglieri, A. Taroni, V. La Ferrara, L. Quercia, L., A novel porous silicon sensor for detection of sub-ppm NO2 concentrations, Sens. Actuators, B, Chem. 2001, 77, 62-66.
    51. H.H. Kung, Transition Metal Oxide: Surface Chemistry and Catalysis, Elsevier, Amsterdam, 1991, vol. 45, pp. 258-273.
    52. C. Cantalini, W. Wlodarski, Y. Li, M. Passacantando, S. Santucci, E. Comini, G. Faglia, G. Sberveglieri, Investigation on the O3 sensitivity properties of WO3 thin films prepared by sol-gel, thermal evaporation and r.f. sputtering techniques, Sens. Actuators, B, Chem. 2000, 64, 182-188.
    53. J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, N. Yamazoe, Grain-size effects in tungsten oxide-based sensor for nitrogen oxides, J. Electrochem. Soc. 1994, 141, 2207-2210.
    54. R. D. Bringans, H. Hochst, and H. R. Shanks, “Defect States in WO3 Studies with Photoelectron Spectroscopy”, Phys. Rev. B 1981, 24, 3481
    55. P. J. Shaver, Appl. Phys. Lett., 1967, 11, 255
    56. N. Yamazoe, “ New approaches for improving semiconductor gas sensors”, Sensors and Actuators B 1991, 5, 7-19.
    57. B.D. Cullity, in Elements X-Ray diffraction, 1990, p127.
    58. Z. Jin, H.J. Zhou, Z.L. Jin, R.F. Savinell, C.C. Liu, Application of nano-crystalline porous tin oxide thin film for CO sensing, Sens. Actuators, B, Chem. 1998, 52, 188-194.
    59. R.D. Bringans, H. Hochst, and H.R. Shanks, Defect states of WO3 studied with photoelectron spectroscopy, Phys. Rev. B 1981, 24, 3481-3489.
    60. H.T. Sun, C.Cantalini, L. Lozzi, M. Passacantando, S. Santucci, M. Pelino, Microstrctural effect on NO2 sensitivity of WO3 thin film gas sensors Part 1 Thin film devices, sensors and actuators, Thin Solid Films 1996, 287, 258-265.
    61. J. Ding, T.J. McAvoy, R.E. Cavicchi, Semancik, Surface state trapping model for SnO2-based microhotplate sensors, Sens. Actuators, B, Chem. 2001, 77, 597-631.
    62. B.E. Hayden, A. King, M.A. Newton, and N. Yoshikawa, “Single crystal and high area titania supported rhodium: the interaction of supported Rh (CO)2 with NO”, Journal of Molecular Catalysis A 2001, 167, 33-46.
    63. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg (ed.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Minnesota, 1979, pp 40-41.
    64. J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, N. Yamazoe, “Grain-size effects in tungsten oxide-based sensor for nitrogen oxides”, J. Electrochem. Soc. 1994, 141, 2207-2210.
    65. P. J. Shaver, “Activated tungsten oxide gas detectors”, Appl. Phys. Lett. 1967, 11, 255-257.
    66. N. L. Wu, S. Y. Wang and I. A. Rusakova, “ Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides”, Science , 1999,285 1375.

    下載圖示 校內:2008-08-15公開
    校外:2008-08-15公開
    QR CODE