| 研究生: |
劉君嬈 Lao, Kuan-Io |
|---|---|
| 論文名稱: |
以六鋁酸鹽催化解離HAN基單推進劑 Catalytic Decomposition of HAN-Based Monopropellants with Hexaaluminates |
| 指導教授: |
吳明勳
Wu, Ming-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 硝酸羥胺 、六鋁酸鹽 、催化解離 、綠色推進劑 、離子液 |
| 外文關鍵詞: | hydroxylammonium nitrate (HAN), hexaaluminate, catalytic decomposition, green monopropellant, ionic liquid |
| 相關次數: | 點閱:65 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硝酸羥銨 (Hydroxylammonium nitrate, HAN) 是一種「綠色」單推進劑,被認為極具潛力取代目前使用的太空燃料—聯氨。由於其致癌性和處理困難,歐盟航空安全總署 (EASA) 一直希望將聯氨禁用,這使得尋找適用於 HAN 解離的催化劑成為目前太空推進方面迫切的議題;亦由於HAN的反應溫度和酸性較高,目前使用於聯氨的催化劑並不適用於HAN基單推進劑。六鋁酸鹽是一種能承受極高溫度的催化劑,即使在大氣壓力下也能有效降低HAN基單推進劑的解離溫度,在這項研究中,多種含不同添加劑的六鋁酸鹽催化劑在高壓下與幾種HAN基單推進劑進行反應,以研究不同添加劑對六鋁酸鹽催化性能的影響。結果表明,所有六鋁酸鹽催化劑均可有效降低HAN基單推進劑的解離溫度,並提高放熱反應的升溫速率,催化劑重複使用的可行性亦透過多次重複實驗來釐清,研究發現在六鋁酸鹽結構中添加黏合劑及鉑,能使催化劑有更好的性能和穩定性。此研究之反應的背景壓力為常壓與高壓3.1 MPa之間,這亦是衛星的工作壓力範圍,結論證明背景壓力會影響解離起始溫度,從而產生不同的反應機制與路徑。重中之重,催化反應可穩定HAN基單推進劑的線燃速。
Hydroxylammonium nitrate (HAN), a ‘green’ monopropellant, is considered a promising substitute for the currently used space fuel, hydrazine. Due to the carcinogenicity and handling difficulties, hydrazine should be banned shortly by the European Union Aviation Safety Agency (EASA), which makes finding a proper catalyst for HAN decomposition an urgent issue in the propulsion industry. Due to the higher reaction temperature and acidity, hydrazine's currently used catalysts are unsuitable for HAN-based monopropellants. Hexaaluminate is a catalyst which can withstand extremely high temperatures and effectively lower the decomposition onset temperature of HAN-based monopropellant even under atmospheric pressure. In this study, hexaaluminate catalysts with various additives and synthesis methods were reacted with specific HAN-based blends under elevated pressures. The catalytic performance of the hexaaluminates and the burning characteristics of different HAN-based propellant blends are investigated. The results show that all hexaaluminate catalysts effectively reduce the decomposition onset temperature of HAN-based monopropellants. The hexaaluminates with binder and Pt loaded bring better catalytic performance and sustainability. The reactions are conducted under atmospheric to elevated pressure up to 3.1 MPa, the operating pressure range of satellites. The background pressure affects the decomposition onset temperature, thus bringing out different reaction mechanisms and pathways. Most importantly, with the application of catalysts, the linear burning rate of HAN-based blends is stable and pressure-independent.
[1] Mordor Intelligence (2021), Communication satellite market – growth, trends, covid-19 impact, and forecasts (2022-2027). https://www.mordorintelligence.com/industry-reports/communication-satellite-market, access on 25 July, 2022.
[2] V. Lappas & V. Kostopoulos, Satellites Missions and Technologies for Geosciences, IntechOpen, United Kingdom, 2020. doi: 10.5772/intechopen.83246
[3] F. Kamal, B. Yann, B. Rachid & K. Charles, Application of Ionic Liquids to Space Propulsion, IntechOpen, United Kingdom, 2011. doi: 10.5772/23807
[4] G.P. Sutton & O. Biblarz, Rocket Propulsion Elements (7th Ed.), John Wiley & Sons Inc., New York, 2001.
[5] T. Edwards (2003), Liquid fuels and propellants for aerospace propulsion: 1903-2003, Journal of Propulsion and Power 19(6), 1089-1107.
[6] D. Freudenmann & H.K. Ciezki (2019), ADN and HAN-based monopropellants – a minireview on compatibility and chemical stability in aqueous media, Propellants Explos. Pyrotech. 44, 1084-1089.
[7] K. Anflo, T.A. Gronland, G. Bergman, R. Nedar & P. Thormahlen, Development Testing of 1-Newton ADN-Based Rocket Engines, European Space Agency SP-557, October 2004.
[8] L. Courthéoux, D. Amariei, S. Rossignol & C. Kappenstein (2006), Thermal and catalytic decomposition of HNF and HAN liquid ionic as propellants, Applied Catalysis B: Environmental 62, 217-225.
[9] M. Negri (2018), New technologies for ammonium dinitramide based monopropellant thrusters -- The project RHEFORM, Acta Astronautica 143, 105-117.
[10] N. Azuma, Y. Niboshi, T. Matsumura, K. Hori, T. Katsumi, K. Hatai, Y. Sugiyama & Y. Nakayama (2017), Basic properties of HAN-based monopropellant, Sci. Tech. Energetic Materials 78(2), 31-36.
[11] R. Amrousse, K. Hori, W. Fetimi & K. Farhat (2012), HAN and ADN as liquid ionic monopropellants: thermal and catalytic decomposition processes, Applied Catalysis B: Environmental 127, 121-128.
[12] H.S. Lee & T.A. Litzinger (2001), Thermal decomposition of han-based liquid propellants, Combustion and Flame 127, 2205-2222.
[13] C.H. Hwang, S.W. Baek & S.J. Cho (2014), Experimental investigation of decomposition and evaporation characteristics of HAN-based monopropellants, Combustion and Flame 161, 1109-1116.
[14] T. Katsumi & K. Hori (2021), Successful development of HAN based green propellant, Energetic Materials Frontiers 2, 228-237.
[15] T. Katsumi, H. Kodama, T. Matsuo, H. Ogawa, N. Tsuboi & K. Hori (2009), Combustion characteristics of a hydroxylammonium nitrate based liquid propellant. combustion mechanism and application to thrusters, Combustion, Explosion and Shock Waves 45(4), 442-453.
[16] R. Amrousse, T. Katsumi, N. Azuma & K. Hori (2017), Hydroxylammonium nitrate (HAN)-based green propellant as alternative energy resource for potential hydrazine, Combustion and Flame 176, 334-348.
[17] American Chemical Society: https://www.acs.org/content/acs/en/molecule-of-the-week/archive/h/hydroxylammonium-nitrate.html, access on: July 25, 2022.
[18] R.S. Jankovsky, HAN-based monopropellant assessment for spacecraft, AIAA Paper 96-2863, 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Lake Buena Vista, Florida, 1-3 July, 1996.
[19] R.A. Spores, R. Masse, S. Kimbrel & C. McLean, GPIM AF-M315E propulsion system, AIAA Paper 2015-3573, 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, Florida, 27 July, 2015.
[20] K. Anflo, T.A. Gronland, G. Bergman, M. Johansson & R. Nedar, Towards green propulsion for spacecraft with ADN-based monopropellants, AIAA Paper 2002-3847, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, 7-10 July 2002.
[21] Defense Logistics Agency: https://www.dla.mil/AboutDLA/News/NewsArticleView/Article/1857404/hazardous-inventory/, access on: July 25, 2022.
[22] H. Meng, P. Khare, G.A. Risha, R.A. Yetter & V. Yang, Decomposition and ignition of HAN-based monopropellant by electrolysis, AIAA Paper 2009-451, 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 5-8 January 2009.
[23] K. Hori, T. Katsumi, S. Sawai, N. Azuma, K. Hatai & J. Nakatsuka (2019), HAN-based green propellant, SHP163 - its R&D and test in space, Propellants Explos. Pyrotech. 44, 1080-1083.
[24] N. Tanaka, T. Matsuo, K. Furukawa, M. Nishida, S. Suemori & A. Yasutake (2011), The "greening" of spacecraft reaction control system, Mitsubishi Heavy Industries Technical Review 48(4), 44-50.
[25] C. Oommen, S. Rajaraman, R.A. Chandru & R. Rajeev, Catalytic decomposition of hydroxylammonium nitrate monopropellant, IPCBEE Paper 10, 205-209, 2011 International Conference on Chemistry and Chemical Process (ICCCP 2011), Bangkok, Thailand, 7-9 May, 2011.
[26] H. Uramachi, D. Shiraiwa, T. Takai, N. Tanaka, T. Kaneko & K. Furukawa (2019), Green propulsion systems for satellites - development of thrusters and propulsion systems using low-toxicity propellants, Mitsubishi Heavy Industries Technical Review 56(1), 1-7.
[27] C.H. McLean, W.D. Deininger, J. Joniatis, P.K. Aggarwal, R.A. Spores, M. Deans, J.T. Yim, K. Bury, J. Martinez, E.H. Cardiff & C.E. Bacha, Green propellant infusion mission program development and technology maturation, AIAA Paper 2014-3481, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Propulsion and Energy Forum, Cleveland, OH, 28-30 July, 2014.
[28] E.J. Wucherer, T. Cook, M. Stiefel, R. Humphries & J. Parker, Hydrazine catalyst production - sustaining S-405 technology, AIAA Paper 2003-5079, 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama, 20-23 July 2003.
[29] E. Schmidt, Hydrazine and its Derivatives. Preparation, Properties, Applications, Wiley, New York, 1984.
[30] R. Amrousse, T. Katsumi, Y. Niboshi, N. Azuma, A. Bachar & K. Hori (2013), Performance and deactivation of Ir-based catalyst during hydroxylamminium nitrate catalytic decomposition, Applied Catalysis A: General 452, 64-68.
[31] R. Amrousse, T. Katsumi, A. Bachar, R. Brahmi, M. Bensitel & K. Hori, Chemical engineering study for hydroxylammonium nitrate monopropellant decomposition over monolith and grain metal-based catalysts, Reac. Kinet. Mech. Catal. 111, 71–88, 2014.
[32] S. Kang, J. Lee & S. Kwon (2014), Platinum/Barium hexaaluminate catalyst to small-scale hydroxylamine nitrate thrusters application, Journal of Propulsion and Power 30(1), 249-251.
[33] R. Amrousse, T. Katsumi, N. Itouyama, N. Azuma, H. Kagawa, K. Hatai, H. Ikeda & K. Hori (2015), New HAN-based mixtures for reaction control system and low toxic spacecraft propulsion subsystem: Thermal decomposition and possible thruster applications, Combustion and Flame 162, 2686-2692.
[34] R. Agnihotri & C. Oommen (2018), Cerium oxide based active catalyst for hydroxylammonium nitrate (HAN) fueled monopropellant thrusters, The Royal Society of Chemistry 8, 22293-22302.
[35] R. Agnihotri & C. Oommen (2020), Evaluation of hydroxylammonium nitrate (HAN) decomposition using bifunctional catalyst for thruster application, Molecular Catalysis 486, 110851.
[36] R. Agnihotri & C. Oommen (2021), Kinetics and mechanism of thermal and catalytic decomposition of hydroxylammonium nitrate (HAN) monopropellant, Propellants Explos. Pyrotech. 46, 286-298.
[37] S. Lee, S. Kang, S. Kwon & G. Park (2016), Lanthanum hexaaluminate catalyst support in a hydrogen peroxide thruster, Journal of Propulsion and Power 32(5), 1301-1304.
[38] S. Hong, S. Heo, W. Kim, Y.M. Jo, Y.K. Park & J.K. Jeon (2019), Catalytic decomposition of an energetic ionic liquid solution over hexaaluminate catalysts, Catalysts 9, 80.
[39] J.J. Torrez-Herrera, S.A. Korili & A. Gil (2020), Progress in the synthesis and applications of hexaaluminate-based catalysts, Catalysis Reviews 64(3), 592-630.
[40] S. Kang & S. Kwon (2021), Preparation and performance evaluation of platinum barium hexaaluminate catalyst for green propellant hydroxylamine nitrate thrusters, Materials 14, 2828.
[41] M. Tian, X. D. Wang & T. Zhang (2016), Hexaaluminates: a review of the structure, synthesis and catalytic performance, Catalysis Science & Technology 6, 1984-2004.
[42] R.J. Kee & N. Sullivan, Metal-substituted hexaaluminate partial oxidation systems: http://coloradofuelcellcenter.org/pages/projects/hexaluminate.html, access on 25 July, 2022.
[43] M.H. Wu & R.A. Yetter (2009), A novel electrolytic ignition monopropellant microthruster based on low temperature co-fired ceramic tape technology, Lab on a Chip 9, 910-916.
[44] J.C. Oxley & K.R. Brower, Thermal decomposition of hydroxylamine nitrate, Proceedings of the SPIE 872, 63-70, May 1988.
[45] D.G. Harlow, R.E. Felt, S. Agnew, G.S. Barney, J.M. McKibben, R. Garber & M. Lewis, Technical Report on Hydroxylamine Nitrate, Office of Environment, Satefy and Health & Office of Nuclear and Facility Safety, DOE/ EH-0555, 1998.
[46] M. Negri et al., Technology development for ADN-based green monopropellant thrusters – an overview of the Rheform, EUCASS Paper 2017-319, 7th European Conference for Aeronautics and Space Sciences (EUCASS), Milan, Italy, 3-6 July, 2017.
[47] R. Amrousse, T. Katsumi, A. Bachar, B. Brahmi, M. Bensitel & K. Hori (2014), Chemical engineering study for hydroxylammonium nitrate monopropellant decomposition over monolith and grain metal-based catalysts, Reac. Kinet. Mech. Catal. 111, 71-88.
[48] D. Amariei, L. Courthéoux, S. Rossignol & C. Kappenstein (2006), Catalytic and thermal decomposition of ionic liquid monopropellants using a dynamic reactor comparison of powder and sphere-shaped catalysts, Chemical Engineering and Processing 46, 165-174.
[49] K.S. Song, Y.S. Seo, H.K. Yoon & S.J. Cho (2003), Characteristics of the NiO/hexaaluminate for chemical looping combustion, Korean J. Chem. Eng. 20(3), 471-475.
[50] J. Sun, J. Wang, X. Zhou, Y. Hui, S. Dong, L. Li, L. Deng, J. Jiang & X. Cao (2018), Thermal cycling behavior of the plasma-sprayed coating of lanthanum hexaaluminate, Journal of the European Ceramic Society 38, 1919-1929.
[51] S. Hoyani, R. Patel, C. Oommen & R. Rajeev (2017), Thermal stability of hydroxylammonium nitrate (HAN), Journal of Thermal Analysis and Calorimetry 129, 1083-1093.
[52] C.W. Siong, Characterization & analysis on electrolytic decomposition of hydroxylammonium nitrate (HAN) ternary mixtures in microreactors, Ph.D. Dissertation, University of Nottingham, Malaysia, 2017.
[53] E.J. Wucherer, S.S. Christofferson & B. Reed, Assessment of high performance han-monopropellants, AIAA Paper 2000-3872, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Huntsville, Alabama, 16-19 July 2000.
[54] N. Rasmont, E.J. Broemmelsiek & J.L. Rovey (2020), Linear burn rate of green ionic liquid multimode monopropellant, Combustion and Flame 219, 212-224.
[55] S. Kim, D.W. Lee, J.Y. Lee, H.J. Eom, H.J. Lee, I.H. Cho & K.Y. Lee (2011), Catalytic combustion of methane in simulated PSA offgas over Mn-substituted La-Sr-hexaaluminate (LaxSr1-xMnAl11O19), Journal of Molecular Catalysis A: Chemical 335, 60-64.
[56] Accuratus: https://accuratus.com/alumox.html, access on 25 July, 2022.
[57] Omega: https://www.omega.com/en-us/resources/thermocouples-response-time, access on 25 July, 2022.
[58] Conax Technologies: https://www.conaxtechnologies.com/wp-content/themes/conax/pdf/6026-Sealing-Gland-Assembly-Instructions.pdf, access on 25 July, 2022.
[59] Jihsense Industrial: https://www.jihsense-loadcell.com/pdf/pv.pdf, access on 25 July, 2022.
[60] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol & T. Siemieniewska (1985), Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure & Appl. Chem. 57(4), 603-619.
[61] The Precision Instruments Center, National Pingtung University of Science and Technology: http://pic.npust.edu.tw/files/15-1163-48206,c82-1.php?Lang=zh-tw, access on 25 July, 2022.
[62] The Precision Instruments Center, National Cheng Kung University: http://higem.ncku.edu.tw/index.php?option=module&lang=cht&task=showlist&id=333&index=3, access on 25 July, 2022.
[63] Jasco: https://jascoinc.com/learning-center/theory/spectroscopy/fundamentals-ftir-spectroscopy/, access on 25 July, 2022.
[64] MRU: https://www.mru.eu/en/products/detail/mgaprime/, access on 30 August, 2022.
[65] W.D. Groot & S. Oleson, Chemical microthruster options, NASA Contractor Report 198531, 1996.
[66] T. Katsumi & K. Hori, Combustion Wave structure of hydroxylammonium nitrate aqueous solutions, AIAA Paper 2010-6900, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, 25-28 July 2010.