簡易檢索 / 詳目顯示

研究生: 顏凱宸
Yen, Kai-Cheng
論文名稱: 聚酯類高分子與其摻合體之樹枝狀結晶形貌與相容性探討
Dendritic Crystal Morphology and Miscibility in Several Model Polyesters and Their Blends
指導教授: 吳逸謨
Woo, Eamor M.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 88
中文關鍵詞: 相容性聚酯類高分子樹枝狀結晶
外文關鍵詞: Polyesters, dendrite, miscibility
相關次數: 點閱:96下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的第一部份中探討Poly(pentamethylene terephthalate) (PPT)與 Poly(heptamethylene terephthalate) (PHepT)摻合體的相容性與結晶動力學。此兩個高分子其主鏈上相差兩個甲基為同型芳香族聚酯類,且皆具有結晶性。PPT與PHepT的摻合體利用偏光顯微鏡(polarized optical microscopy)(POM)觀察其熔融態時的相型態,以及微分掃描熱卡計(differential scanning calorimeter) (DSC) 觀察其熱行為後證明此PPT/PHepT摻合體為一相容系統,且其作用力參數為-0.57,代表此兩高分子間存在某種作用力使其得以相容。此外進一步利用晶體成長的分析來佐證此兩個結晶性高分子的相容性。比較neat PPT與PPT/PHepT blends的Regime behavior,並計算其Regime II的各項參數以了解PHepT的加入對PPT在成長動力學以及球晶型態上的影響。然而於本研究中,發現neat PPT與PPT/PHapT blends其成長動力學中的Regime transition(Regime II到Regime III)與球晶型態(ringless to ring-banded)的變化並無明顯關聯。
    本論文的第二部份在探討生物可相容聚酯類Poly(ethylene adipate) (PEA)與Poly(1,4-butylene adipate) (PBA)與具有多個酚基的天然高分子Tannic Acid (TA)間的相容性與作用力探討。其中利用微分掃描熱卡計分析其熱行為以及利用傅立葉紅外線光譜儀(Fourier-transform infrared spectrometry)(FTIR)分析其作用力行為,並利用偏光顯微鏡觀察其球晶型態與測量其球晶成長速率。依據在PEA/TA與PBA/TA兩摻合系統中各個組成下皆得到單一玻璃轉移溫度的結果,證明PEA/TA與PBA/TA為相容系統。而FTIR的結果也顯示出PEA或PBA的羰基(C=O)皆會與TA中的氫氧根(-OH)產生氫鍵作用力。進一步將各組成得到的玻璃轉移溫度與利用Kwei equation求出的理論玻璃轉移溫度比較後,發現隨著TA組成的增加,其實驗值會由負偏差變為正偏差,而得到負的q值,約為-60~-70。最後利用偏光顯微觀察TA對PEA以及PBA球晶型態和球晶成長速率的影響,以進一步證明該摻合系統的相容性與作用力。總言之,聚酯類與TA摻合的行為與文獻中常見的聚酯類與Poly(v-phenylphenol) (PVPh)摻合的行為相似。然而,本研究中利用的TA為一生物相容性與具有生物分解性的高分子,然而PVPh則是工業合成的高分子。利用加入一天然且具有生物分解性的高分子與化學合成高分子形成相容摻合體將可以改善化學合成高分子的生物分解性,且提供一有效的改質方法。
    本論文的第三部份探討PEO/TA掺合系統形成的樹枝狀結構。此樹枝狀多形成於具有強作用力的PEO與不定型高分子之相容系統中。其中利用微分掃描熱卡計初步判定PEO/TA掺合系統為一相容系統。此外並利用FTIR證明PEO與TA存在氫鍵作用力。其結晶動力學部份利用Lauritzen-Hoffman model分析,證明其樹枝狀結晶型態與成核理論中的Regime變化無關,而是由於其控制晶體成長的機制轉為Diffusion-limited mechanism. 此外本研究並利用WAXD與AFM以晶面成長與表面結構的角度探討PEO/TA相容系統所形成的樹枝狀結構。經WAXD分析後發現PEO晶格中的(032)晶面繞射峰會隨著TA的加入而降低,推論是由於PEO與TA之間的氫鍵作用力使得PEO的結晶方向受到限制。此外,利用AFM觀察到PEO/TA系統中形成的樹枝狀結構其晶板成長方向發生轉變。

    Miscibility and crystal growth kinetics in crystalline/crystalline blends of monomorphic poly(pentamethylene terephthalate) (PPT) with monomorphic poly(heptamethylene terephthalate) (PHepT) were probed using polarized-light optical microscopy (POM), differential scanning calorimetry (DSC). The blends comprising PPT and PHepT of all compositions were proven to be miscible in the melt state or quenched amorphous phase, whose interaction strength was determined (c12 = - 0.57), showing favorable interactions and phase homogeneity. Growth analysis also showed supporting evidence for miscibility between these two crystalline polymers. Regime-II parameters for crystals were compared between neat PPT and PPT blended with PHepT to assess effects on growth kinetics, phase, and spherulite patterns of PPT in the blends. For this system, no coincidence was found between the regime transitions of growth kinetics (from Regime-II to III) and spherulite patterns (transition from ringless to ring-banded).
    Specific interactions and miscibility are demonstrated in a series of binary miscible blend comprising of bio-compatible/biodegradable polyesters, such as poly(ethylene adipate) (PEA), or poly(butylene adipate) (PBA), and a macomolecular ester with polyphenol groups, tannic acid (TA). Thermal analysis and infrared spectroscopy were used for proving existence of favorable interactions, and polarized-light optical microscopy was used for characterizing the changes in crystal growth. The appearance of a single composition-dependent glass transition temperature (Tg) observed by differential scanning calorimetry (DSC) indicated that TA is miscible with PBA, and PEA, respectively, over the entire range of compositions. Fourier transform infrared (FTIR) spectroscopy confirmed the presence of specific intermolecular hydrogen bonding interactions between the carbonyl groups of polyesters and the phenolic hydroxyl groups of TA. The blend Tg’s generally exhibited various extents of positive-then-negative deviation from linearity with the compositions. The Tg-composition relationships for three blend systems could all be fitted by the Kwei equation with large negative q values of -60~ -70 for different polyesters. Significant effects by TA on the spherulitic crystallization growth in the polyester/TA blends were also discussed to support the miscibility and strong interactions. Overall, the behavior of blends of polyesters with TA is similar to that of blends of polyesters with poly(vinyl p-phenol) (PVPh) that have been more widely studied and reported. However, TA is naturally bio-resourceful, bio-compatible, and bio-degradable but PVPh is not. Synergism of miscibility, natural bio-compatibility, and biodegradability in these blends by introducing naturally biodegradable macromolecules such as TA may offer greater potential in intended applications.
    The third part of this study deals with the dendritic morphology of PEO/TA blends. Such peculiar morphology has been reported in many miscible PEO/amorphous polymer blends that are with strong intermolecular interactions. The miscibility of PEO/TA blends was determined by DSC, and strong intermolecular interactions were confirmed by FTIR. The crystallization kinetics of PEO/TA was analyzed by Lauritzen-Hoffman model. For this system, no regime transition was found in the crystallization temperatures measured. The crystallographic effect on the feather-like or dendrite morphologies of PEO/TA blend was analyzed by Wide-Angle X-ray Diffraction (WAXD). The intensity of (032) crystal planes decreased with the increase of TA content. It may be due to the constrained growth direction caused by the strong intermolecular interactions. Besides, the surface morphologies observed by AFM showed that the lamellar orientation changed from edge-on to flat-on.

    CONTENTS ABSTRACT (in CHINESE AND ENGLISH) I ACKNOWLEDGEMENT V CONTENTS (in English only) VI LIST OF TABLE VIII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 CHAPTER 2 THEORY 6 2.1 Miscibility of Polymer Blend 6 2.2 Melting Temperature Depression In Polymer Blends 7 2.3 Determination of The Equilibrium Melting Temperature. 8 2.3.1 Linear Hoffman-Weeks Extrapolation. 8 2.3.2 Nonlinear Hoffman-Weeks Extrapolation. 9 2.4 Lauritzen-Hoffman (L-H) Secondary Nucleation Theory. 10 2.5 Diffusion-Limited Mechanism 12 CHAPTER 3 EXPERIMENT 14 3.1 Materials 14 3.2 Preparation of Polymer Blends 16 3.3 Apparatus 16 CHAPTER 4 RESULTS AND DISCUSSION 19 4.1 Miscibility and Crystallization Kinetics of PPT/PHepT 19 4.1.1 Spherulite Morphologies of PPT/PHepT Blends 19 4.1.2 Equilibrium Melting Temperature Depression 20 4.1.3 Crystallization Kinetics and Regime Behavior 23 4.2 Miscibility of poly(ethylene adipate) with Tannic Acid 39 4.2.1 Spherulite Morphologies of PEA/TA 39 4.2.2 Thermal Analysis and Tg-composition Relationship in PEA/TA blends. 39 4.2.3 IR Characterization of the Intermolecular Interactions 41 4.2.4 Spherulite Growth Rate Measurement 43 4.3 Miscibility of poly(1,4-butylene adipate) with Tannic Acid 49 4.3.1 Spherulite Morphologies of PEA/TA 49 4.3.2 Thermal Analysis and Tg-composition Relationship in PEA/TA Blends. 49 4.3.3 IR Characterization of the Intermolecular Interactions 51 4.3.4 Spherulite Growth Rate Measurement 53 4.4 Model for Interpretation of the Dendritic Morphology of PEO/TA Blend System 60 4.4.1 Morphologies of PEO/TA. 60 4.4.2 Miscibility and the Intermolecular Interaction of PEO/TA Blend. 60 4.4.3 Crystallization Kinetics and the Regime Behavior of PEO/TA Blends 61 4.4.4 X-ray Diffraction Studies and the Surface Morphologies on the Dendrite of PEO/TA blends. 64 CHAPTER 5 CONCLUSIONS 78 REFERENCES 81 APPENDIX 87

    [1] Saeki, S.; Cowie, JMG; McEwen I. Polymer, 24, 60, 1983.
    [2] Cowie, JMG; McEwen, I. Polymer, 26, 1667, 1985.
    [3] Widmaier, J. M.; Mignard, G. Eur. Polym. J., 23, 989, 1987.
    [4] Lin J. L.; Roe, R. J. Macromolecules, 20, 218, 1987.
    [5] Schneider, H. A.; Dilger, P. Polym. Bull., 21, 265, 1989.
    [6] Rameau, A.; Gallot, Y.; Marie, B.; Farnoux, P. Polymer, 30, 386, 1989.
    [7] Callaghan, T. A.; Paul, D. R. Macromolecules, 26, 2439, 1993.
    [8] Chang, L. L.; Woo, E. M. Macromol. Chem. Phys., 202, 636, 2001.
    [9] Chang, L. L.; Woo, E. M. Macromolecules, 33, 6892, 2000.
    [10] Avramov, I.; Avramova, N. J. Macromol. Sci., B30, 335, 1991.
    [11] Avramova, N.; Fakirov, S.; Avramov, I.; Die, Angew. Makromol. Chem., 199, 129, 1992.
    [12] Fakirov, S.; Evstatiev, M.; Petrovich, S. Macromolecules, 26, 5219, 1993.
    [13] Avramova, N. Polymer, 36, 801, 1995.
    [14] Kuo, Y. H.; Woo, E. M. Polym. J., 35, 236, 2003.
    [15] Kuo, Y. H.; Woo, E. M. J. Polym. Sci., Part B: Polym. Phys., 41, 2394, 2003.
    [16] Doi, Y. Microbial polyesters, VCH, Weinheim 1990.
    [17] Juni, K.; Nakano, M.; Kubota, M. J. Controlled Release, 4, 25, 1986.
    [18] Akhtar, S.; Pouton, C. W.; Notarianni, L. J. Polymer, 33, 117, 1992.
    [19] Mochizuki M.; Hirami M. Polym. For Adv. Technol., 8, 203, 1996.
    [20] Senda, T.; He, Y.; Inoue, Y. Polym. Inter., 51, 33, 2001.
    [21] Honma, T.; Senda, T., Tnoue. Y. Polym. Inter., 52, 1839, 2003.
    [22] Correlo, V. M.; Boesel, L. F.; Bhattacharya, M. Mano, J. F.; Neves, N. M.; Reis, R. L. Mater. Sci. Eng., A403, 57, 2005.
    [23] Zhu, B.; Li, J. C.; Yoshie, N.; Inoue, Y. Macromol. Biosci., 3, 684, 2003.
    [24] Dubois, P.; Narayan, R. Macromol. Symp., 198, 233, 2003.
    [25] Kim, C. H.; Jung, K. M.; Kim, J. S.; Park, J. K. J. Polym. Enviro., 12, 179, 2004.
    [26] Belfiore, L. A.; Qin, C.; Ueda, E.; Pires, A. T. N. J. Polym. Sci. Part B: Polym. Phys., 31, 8415-8424, 1993.
    [27] Jutier, J. J.; Lemieux, E.; Prud’homme, R. E. J. Polym. Sci., Part B: Polym. Phys., 26, 1313, 1988.
    [28] Popescu, M. C.; Vasile, C.; Filip, D.; Macocinshi, D.; Singurel, G. J. Appli. Polym. Sci., 94, 1156, 2004.
    [29] Haslam, E. J. Nat. Prod., 59, 205, 1996.
    [30] Edelmann, A.; Lendl, B. J. Am. Chem. Soc., 124, 14741, 2002.
    [31] Frazier, R. A.; Papadopoulou, A.;Mueller-Harvey, I.; Kissoon, D.; Green, R. J. J. Agric. Food. Chem., 51, 5189, 2003.
    [32] Baxter, N. J.; Lilley, T. H.; Haslam, E.; Williamson, M. P. Biochemistry 36, 5566, 1997,.
    [33] Chibowski, E.; Espinosa-Jimenez, M.; Ontiveros-Ortega, A.; Gimenez-Martin, E. Langmuir, 14, 5237, 1998.
    [34] Zhang, S. H.; Painter, P. C.; Runt, J. Macromolecules, 35, 8478, 2002.
    [35] Shutava, T.; Prouty, M.; Kommireddy, D.; Lvov, Y. Macromolecules, 38, 2850, 2005.
    [36] Huang, Y. P.; Kuo, J. F.; Woo, E. M. Polymer int., 51, 51, 2001.
    [37] Huang, Y. P.; Woo, E. M. Polymer, 42, 6493, 2001.
    [38] Runt, J. P.; Barron, C. A.; Zhang, X. F.; Kumar, S. K. Macromolecules, 24, 3466, 1991.
    [39] Martuscelli, E.; Pracella, M.; Wang, Y. P. Polymer, 25, 1097, 1984.
    [40] Alfonso, G. C.; Russell, T. P. Macromolecules, 19, 1143, 1986.
    [41] Mandal, T. K.; Kuo, J. F.; Woo, E. M. J. Polym. Sci. Part B: Polym. Phys., 38, 562, 2000.
    [42] Woo, E. M.; Mandal, T. K.; Chang, L. L.; Lee, S. C. Polymer, 41, 6663, 2000.
    [43] Paternostre, L.; Damman, P.; Dosiere, M. J. Polym. Sci., Part B: Polym. Phys., 37, 1197, 1999.
    [44] Lin, J. H.; Woo, E. M. Polymer, 47, 6826, 2006.
    [45] Cheng, S. Z. D.; Chen, J.; Janimak, J. J. Polymer, 31, 1018, 1990.
    [46] Cheng, S. Z. D.; Chen, J.; Barley, J. S.; Zhang,A.; Habenschuss A.; Zschack P. R. Macromolecules, 25,1453, 1992.
    [47] Cheng,S. Z. D.; Chen, J.; Zhang, A.; Barley, J. S.; Habenschuss, A.; Zschack, P. R. Polymer, 3, 1140, 1992.
    [48] Cheng, S. Z. D.; Noid, D. W.; Wunderlich, B. J. Polym. Sci. Polym. Phys. Ed., 27, 1149, 1987.
    [49] Price, C.; Evans, K. A.; Booth, C. Polymer, 16, 196, 1975.
    [50] Marentette, J. M.; Brown, G. R. Polymer, 39, 1405, 1998.
    [51] Zhai, X.; Wang, W.; Zhang, G.; He, B. Macromolecules, 39, 324, 2006.
    [52] Massa, M. V.; Dalnoki-Veress, K.; Forrest, J. A. Eur. Phys. J., E11, 191, 2003.
    [53] Zhai, X. M.; Wang, W.; Ma, Z. P.; Wen, X. J.; Yuan, F. X.; Tang, F.; He, B. L. Macromolecules, 38, 1717, 2005.
    [54] Mareau, V. H.; Prud’homme, R. E. Macromolecules, 38, 398, 2005.
    [55] Mareau, V. H.; Prud’homme, R. E. Polymer, 46, 7255, 2005.
    [56] Beers, K. L.; Douglas, J. F.; Amis, E. J.; Karim, A. Langmuir, 19, 3935, 2005.
    [57] Hoffmann, C. L.; Rabolt, J. F. Macromolecules, 29, 2543, 1996.
    [58] Affrossman, S.; Kiff,T.; O’Neill, S. A.; Pethrick, R. A.; Richards, R. W. Macromolecules, 32, 2721, 1999.
    [59] Reiter, G..; Sommer, J. U. J. Chem. Phys., 112, 4376, 2000.
    [60] Reiter, G..; Sommer, J. U. Phys. Rev. Lett., 80, 3771, 1998.
    [61] Eckmann, J. P.; Meakin, P.; Procaccis, I.; Zeitak, R. Phys. Rev. Lett., 65, 52, 1990.
    [62] Ferreiro, V. J.; Douglas, F.; Warren, J.; Karim, A. Phys. Rev. E., 65, 1, 2002.
    [63] Nishi, T.; Wang, T. T. Macromolecules, 8, 909, 1975.
    [64] Hoffmann, J. D.; Davis, G. T.; Lauritzen, J. I. In Treatise on Solid State Chemistry,
    Hannay, N. B., Ed.; Plenum Press: New York 1976, Vol. 3.
    [65] Flory, P. J.; Vrij, A. J. Am. Chem. Soc., 85, 3548, 1963.
    [66] Hoffmann, J. D.; Weeks, J. J. J. Res. Natl. Bur. Stand. (US), A66,13, 1963.
    [67] Hoffmann, J. D.; Miller, R. L. Polymer, 38, 3151, 1997.
    [68] Marand, H.; Xu, J.; Srinivas, S. Macromolecules, C38, 391, 1998,.
    [69] Xu, J.; Srinivas, S.; Marand, H.; Agarwal, P. Macromolecules, 31, 8230, 1998.
    [70] Sperling, L. H. Introduction to physical polymer science, 3rd ed., New York: Willey, 2001.
    [71] Hoffmann, J. D.; Miller, R. L. Macromolecules, 21, 3038, 1988.
    [72] Di Lorenzo, M. L. Prog. Polym. Sci., 28, 663, 2003.
    [73] Reiter, G.; Sommer, J.U. Phys. Rev. Lett., 80, 3771, 1998.
    [74] Vicsek, T. Phys. Rev. Lett. 1984, 53, 2281; Phys. Rev. A, 32, 3084, 1985.
    [75] Banavar, J. R.; Kohmoto, M.; Roberts, J. Phys. Rev. A, 33, 2065, 1986.
    [76] Aukrust, T.; Novotny, M. A,; Browne, D. A.; Kaski, K. Phys. Rev. A, 39, 2587, 1989.
    [77] Eckmann, J.-P.; Meakin, P.; Procaccia, I.; Zeitak, R. Phys. Rev. Lett., 65, 52, 1990.
    [78] Yokoyama, E.; Kuroda, T. Phys. Rev. A, 41, 2038, 1990.
    [79] Ohta, S.; Honjo, H. Phys. Rev. A, 44, 8425, 1991.
    [80] Ihle, T.; Mu¨ller-Krumbhaar, H. Phys. Rev. Lett., 70, 3083, 1993.
    [81] Brener, E.; Mu¨ller-Krumbhaar, H.; Temkin, D. Phys. Rev. E, 54, 2714, 1996.
    [82] Bogoyavlenskiy, V. A.; Chernova, N. A. Phys. Rev. E, 61, 1629, 2000.
    [83] Sommer, J.-U.; Reiter, G. J. Chem. Phys., 112, 4384, 2000.
    [84] Witten, T. A., Jr.; Sander, L. M. Phys. Rev. Lett., 47, 1400, 1981; Phys. Rev. B27, 5686, 1983.
    [85] Meakin, P. Phys. ReV. A, 27, 604, 1983.
    [86] Gilbert, M.; Hybart, F. Polymer, 13, 327, 1972,.
    [87] Wu, P. L.; Woo, E. M.; Liu, H. L. J. Polym. Sci., Part B: Polym. Phys., 42, 4421, 2004.
    [88] Flory, P. J. Principls of Polymer Chemistry. Ithaca, NY: Cornell University Press, 1953.
    [89] Van Krevelen, D. W. Properties of Polymers, 3rd edition. Elsevier, Amsterdam, 1990.
    [90] Minakov, A.A.; Mordvintsev D.A.; Schick, C. Polymer, 45, 3755, 2004.
    [91] Chuang, W. T.; Hong, P.D.; Chuah, H. H. Polymer 45, 2413, 2004.
    [92] Kwei, T. K.; Pearce, E. M.; Pennacchia, J.R.; Charton, M. Macromolecules, 20, 1174,
    1987.
    [93] Kwei, T. K.; J. Polym. Sci. Polym. Lett. Ed., 22, 307, 1984.
    [94] Maldonado-Santoyo, M.; Ortiz-Estrada, C.; Luna-Barcenas, G.; Sanchez, I. C.;
    Cesteros, L. C.; Katime, I.; Nuno-Donlucas, S. M. J Polym Sci Part B: Polym.
    Phys.,42, 636, 2004.
    [95] Chang, L. L.; Woo, E. M.; J Polym Sci Part B: Polym Phys; 41, 772, 2003.
    [96] Marentette, J. M.; Brown, G. R. Polymer, 39, 1405, 1998.
    [97] Point, J. J.; Damman, P.; Janimak, J. J. Polymer, 34, 3771, 1993.
    [98] Huang, Y. P.; Kuo, J. F.; Woo, E. M. Polymer int., 51, 55, 2001.
    [99] Wu, L.; Lisowski, M.; Talibuddin, S.; Runt, J. Macromolecules, 32, 1576, 1999.
    [100] Talibuddin, S.; Wu, L.; Runt, J. Macromolecules, 29, 7527, 1996.
    [101] Hong, P. D.; Chung, W. T.; Hsu, C. F. Polymer, 43, 3335, 2002.
    [102] Shafee, E. E. Polym. Int., 53, 249, 2004.
    [103] Marentette J. M.; Brown, G. R. Polymer, 39, 1415, 1998.
    [104] Huang, C. I.; Chen, J. R. J. Polym. Sci., Part B: Polym. Phys., 39, 2705, 2001.
    [105] Cheng, C.; Xuesong, Z.; Yuqanq Z.; D. Lisong, J. Polym. Sci., Part B: Polym.
    Phys., 43, 35, 2005.
    [106] Geil, P. H. “Polymer single crystals,” Wiley, New York, 1963.
    [107] Bassett, D. C. “Principles of polymer morphology,” Cambridge University Press,
    Cambridge, 1981.
    [108] Yun, J. H.; Kuboyama K.; Ougizawa, T. Polymer, 47, 1715, 2006.

    下載圖示 校內:2008-07-16公開
    校外:2008-07-16公開
    QR CODE