| 研究生: |
陳子祥 Chen, Tzu-Hsiang |
|---|---|
| 論文名稱: |
高壓P型橫向擴散金氧半場效電晶體的熱載子退化與閘極氧化層完整性之探討 Hot-Carrier-Induced Degradation and Gate Oxide Integrity Issue on HV-P-LDMOSFET |
| 指導教授: |
陳志方
Chen, Jone Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | P型高壓橫向擴散金氧半場效電晶體 、熱載子導致之退化 、閘極氧化層之暫態崩潰 、直接電流電流電壓法 |
| 外文關鍵詞: | P-type HVLDMOSFET, hot-carrier-induced degradation, gate oxide quasi-breakdown, DCIV technique |
| 相關次數: | 點閱:115 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,探討了具有淺溝槽隔離(STI)結構的P型通道橫向擴散金氧半場效電晶體(LDMOS),受熱載子影響產生的退化及其機制與熱載子誘發之閘極氧化層完整性議題。
首先,描述高壓橫向擴散金氧半場效電晶體的優點以及其應用。研究接著陳述具有淺溝槽隔離的高壓橫向況散金氧半場效電晶體的熱載子可靠度議題的研究動機。此外,還會介紹熱載子效應、暫態崩潰(Q-BD)以及直接電流電流電壓 (DCIV)的基本原理。
接著,呈現本研究之元件結構的描述以及量測設定,也會介紹電性特性包含ID-VG以及IG-VG的量測方法。
在本文內容的主要部分,在加壓條件為閘極電流最大時且大的汲極電壓下,會記錄並且分析熱載子誘發之線性區汲極電流退化。 透過直接電流電流電壓以及電腦輔助模擬(TCAD)的分析後,熱載子誘發的傷害以及其產生的地點都能夠被決定。因此,兩階段式退化機制能夠被發展出來。第一階段的退化歸因於製程剩餘下的介面補陷的減少,第二階段則是歸因於加壓誘發之介面補陷和電子補陷的競爭。除此之外,閘極電流能與線性區汲極電流有很好的相關性。
最後一個部分,研究在閘極電流最大的加壓下之汲極端閘極氧化層之暫態崩潰。電子補陷產生了一些低電阻的電流路徑導致了暫態崩潰,而暫態崩潰可以產生對於電流設計的一些潛在性的問題。除此之外,時間相依介電質崩潰(TDDB)的分析也顯示了閘極電流能夠在崩潰時間預測實驗中扮演一個指標。
In the thesis, hot-carrier-induced degradation and mechanism as well as the gate oxide integrity issue of P-type high voltage lateral diffused metal-oxide –semiconductor (HVLDMOS) transistors with shallow trench isolation (STI) structure were investigated.
First, the advantages of HVLDMOS transistors and the applications of them were illustrated. The motivation of studying the hot-carrier-induced reliability issues of the HVLDMOS transistors with STI structure was presented. Moreover, the basic theories of the hot carrier effect (HCE), the quasi-breakdown (Q-BD), and direct current current-voltage (DCIV) technique were briefly introduced.
Next, the delineation of the device structure of our study and the measurement setup were presented. The measurement methodology of electrical characteristics including ID-VG & IG-VG was introduced.
In the main part of content, the hot-carrier-induced IDlin degradation under IGMAX stress with various stress drain voltage was recorded and analyzed. By means of DICV method and TCAD simulation, the type of damage and its location were able to be determined. Consequently, the two-stage degradation mechanism was developed. The reduction of residual-fabrication interface traps contributed to the first stage degradation. Besides, the competition between stress-induced interface traps and electron traps gave birth to the second stage degradation. Moreover, the gate current correlated well with the IDlin lifetime.
In the final part, under the IGMAX stress, the quasi-breakdown (Q-BD) happened in the drain-side gate oxide was inspected. The low-resistance paths induced by electron traps resulted in the Q-BD, which could cause potential problems of circuit design. Moreover, the time dependent dielectric breakdown (TDDB) analysis shown that the gate current was capable of an indicator of time to breakdown prediction test.
Chapter 1
[1] Mikoshiba, H., T Horiuchi, and K. Hamano (1986), “Comparison of Drai Structures in n-Channel MOSFET’s,” IEEE Transactions on Electron Devices, vol.ED-33, no. 1, 1986, pp.140~144
[2] Ogura, S., P. J. Tsang, W.W. Walker, D.L. Critchlow, and J.F. Shepard (1981), “Elimination of hot electron gate current by the lightly doped drain-source structure,” IEEE Electron Devices Meeting, International, 27, pp. 651~654
[3] Li, Y. Q., C. A. T. Salama, M. Seufert, P. Schvan, and Mike King (1997), “Design and Characterization of Submicron BiCMOS Compatible High-Voltage NMOS and PMOS Devices,” IEEE Transactions on Electron Devices, 44(2), pp. 331~338
[4] Zitouni, M., F. Morancho, H. Tranduc, P. Rossel, J. Buxo, I. PageÁs, and S. Merchant (1999), “A new lateral power MOSFET for smart power ICs: the ``LUDMOS concept'”, Microelectronics Journal , 30(6), pp. 551~561
[5] Shi, Y., N. Feilchenfeld, R. Phelps, M. Levy, M. Knaipp, and R. Minixhofer (2011), “Drift Design Impact on Quasi-Saturation & HCI for Scalable N-LDMOS”, IEEE International Symposium on Power Semiconductor Devices & IC's, San Diego, May, pp.215~218
[6] Klein, N., S. Levin, G. Fleishon, S. Levy, A. Eyal, and S. Shapira (2008), “Device design tradeoffs for 55v LDMOS driver embedded in 0.18 micronplatform”, IEEE 25th Convention of Electrical and Electronics Engineers in Israel, 2008. IEEEI 2008., Eilat, December, pp. 736~740
[7] Reggiani, S., S. Poli, E. Gnani, A. Gnudi, G. Baccarani, M. Denison, S. Pendharkar, R. Wise, and S. Seetharaman (2010), “Analysis of HCS in STI-based LDMOS transistors”, Reliability Physics Symposium(IRPS), 2010 IEEE International, Anaheim, May, pp. 881~886
[8] Tamma P. K. (2013), “Selecting P-channel MOSFET for Switching Applications”, Application Note AN-LV-11-2013-V1.0-EN-059, Infineon
[9] Aresu, S., R. Vollertsen, R. Rudolf, C. Schlünder, H. Reisinger and W. Gustin (2012), “Physical Understanding and Modelling of new Hot-Carrier Degradation Effect on PLDMOS Transistor”, Reliability Physics Symposium (IRPS), 2012 IEEE International, Anaheim, April, pp. XT.11.1~XT.11.6
[10] Bae, K., M. Jin, H. Lim, L. Hwang, D. Shin, J. Park, J. Heo, J. Lee, J. Do, I. Bae, C. Jeon, and J. Park (2011), “Behaviors and physical degradation of HfSiON MOSFET linked to strained CESL performance booster”, Reliability Physics Symposium (IRPS), 2011 IEEE International, Monterey, April, pp. PL.1.1~PL.1.5
[11] Jie, B., Chim, W., M. Li, K. Lo (2011), “Analysis of the DCIV Peaks in Electrically Stressed pMOSFETs”, IEEE Transactions on Electron Devices, 48(5), 2011, pp. 913~920
[12] Chen, J., S. Chen, K. Wu, Shih, J., Wu, K. (2009), “Convergence of Hot-Carrier-Induced Saturation Region Drain Current and On-Resistance Degradation in Drain Extended MOS Transistors”, IEEE Transactions on Electron Devices, 56(11), pp. 2843~2847
[13] Wong, W., A. Icel (1995), “A comprehensive methodology and model for the characterization of hot-carrier induced MOS device degradation”, Devices, Circuits and Systems, 1995., Proceedings of the 1995 First IEEE International Caracas Conference, Caracas, December, pp. 183~187
[14] Wolf, S. (1995), Silicon Processing for the VLSI Era volume 3: The Submicron MOSFET, Sunset Beach, California, U. S. A: Lattice Press
[15] Hu, C. M., C. T. Simon, H. Fu-Chieh, P. K. ko, T. Y. Chan, and K. W. Terrill (1985), “Hot-Electron-Induced MOSFET Degradation-Model, Monitor, and Improvement”, IEEE Journal of Solid-State Circuits, 20, pp. 295~305
[16] Ong, T., Ko, P.-K., and Chenming Hu (1990), “Hot-carrier current modeling and device degradation in surface-channel p-MOSFETs”, IEEE Transactions on Electron Devices, 37(7), pp. 1658~1666
[17] Brassington, M.P., and R.R. Razouk (1988), “The relationship between gate bias and hot-carrier-induced instabilities in buried- and surface-channel PMOSFETs”, IEEE Transactions on Electron Devices, 35(3), pp. 320~324
[18] Tian, K., Jone F. Chen, S. Chen, K. Wu1, and J. R. Lee, T. Huang, C. M. Liu, and S. L. Hsu (2008), “An Investigation on Hot-Carrier Reliability and Degradation Index in Lateral Diffused Metal–Oxide–Semiconductor Field-Effect Transistors”, Japanese Journal of Applied Physics (JJAP), 47(4S), , pp. 2641~2644
[19] Huff, H.R., D.C. Gilmer, (Ed.) (2005), High Dielectric Constant Materials : VLSI MOSFET applications, Springer
[20] Guan, H., J. Cho, M. Li, Y. He, Z. Xu, and D. Zhong (1999), “A study of quasi-breakdown mechanism in ultra-thin gate oxide by using DCIV technique,” in Proceedings of the 1999 7th International Symposium on the Physical and Failure Analysis of Integrated Circuits, pp.81~84
[21] Chen, I., J. Choi, Y. Chan, C. Hu (1988), “ The Effect of Channel Hot-Carrier Stressing on Gate-Oxide Integrity in MOSFET’s”, Reliability Physics Symposium 1988. 26th Annual Proceedings., International, Monterey, April, pp. 1~7
[22] Distefano, T., M. Shatzkes (1974), “ Impact ionization model for dielectric instability and breakdown,” Applied Physics Letters, 25(12), pp.685~687
[23] Harari, E. (1978), “Dielectric breakdown in electrically stressed thin films of thermal SiO2,” Applied Physics Letters, 49(4), pp. 2478~2489
[24] Tzou, J., C. Yao, R. Chang, H. Chan (1986), “Temperature dependence of charge generation and breakdown in SiO2,” IEEE Electron Device Lett., EDL-7(7), pp. 446~448
[25] Lee, S., B. Cho, J. Kimm S. Choi (1994), “Quasi-breakdown of ultrathin gate oxide under high field stress,” Electron Devices Meeting, 1994. IEDM '94. Technical Digest., International, San Francisco, December, pp.25.4.1~25.4.4
[26] Okada, K., T. Horikawa, H. Satake, H. Ota , A. Ogawa, T. Nabatame, A. Toriumi (2006), “Mechanism of Gradual Increase of Gate Current in High-K Gate Dielectrics and Its Application to Reliability Assessment”, Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE International, San Jose , March, pp.189~194
[27] Huang, Y.H., J.R. Shih, C.C. Liu, Y,H, Lee, R. Ranjan, P.Y. Chiang, D.C. Ho, and K. Wu (2011), “Investigation of Multistage Linear Region Drain Current Degradation and Gate-Oxide Breakdown Under Hot-Carrier Stress in BCD HV PMOS”, Reliability Physics Symposium, 2011 IEEE International, Monterey, April, pp. 5A.3.1~5A.3.5
[28] Elliot, A. B. M. (1976), “The Use of Charge Pumping Currents to Measure Surface State Densities in MOS transistors,” Solid-State Electronics, 19, pp. 241~247
[29] Chauhan, Y.S., R. Gillon, M. Declercq, , and A.M. Ionescu, (2007), “Impact of lateral non-uniform doping and hot carrier degradation on capacitance behavior of high voltage MOSFETs,” Solid State Device Research Conference, ESSDERC 2007. 37th European, Munich, September, pp. 426~429
[30] Zhu, S., A. Nakajima, T. Ohashi, and Hideharu Miyake (2005), “Interface trap and oxide charge generation under negative bias temperature instability of p-channel metal-oxide-semiconductor field-effect transistors with ultrathin plasma-nitrided SiON gate dielectrics,” Journal of Applied Physics 98, pp. 114504(1~6)
[31] Jie, B. B., W. K. Chim, Ming-Fu Li , and K. F. Lo (2001), “Analysis of the DCIV Peaks in Electrically Stressed pMOSFETs”, IEEE Transactions on Electron Devices, 48(5), pp. 913~920
[32] Hall, R. N. (1951), "Germanium rectifier characteristics," Physical Review Letters, 86, p. 228
[33] Jie, B. B., M. F. Li, C. L. Lou, W. K. Chim, D. S. H. Chan, and K. F. Lo (1997), “Investigation of interface traps in LDD pMOST's by the DCIV method,” IEEE Electron Device Letter, 18(12), pp. 583~585
[34] He, Y. and G. Zhang (2011), “Method for Direct Characterizing Interface Traps in STI-type HV SOI LDMOSFETs,” SOI Conference (SOI), 2011 IEEE International, Tempo, October, pp. 1~2
[35] He, Y. ,G. Zhang, L. Han, and X. Zhang (2012), “Multiregion DCIV: A Sensitive Tool for Characterizing the Si/SiO2 Interfaces in LDMOSFETs”, IEEE Electron Device Letter, 33(10), pp. 1435~1437
Chapter 2
[1] Zitouni, M., F. Morancho, H. Tranduc, P. Rossel, J. Buxo, I. PageÁs, and S. Merchant (1999), “A new lateral power MOSFET for smart power ICs: the ``LUDMOS concept'”, Microelectronics Journal , 30(6), pp. 551~561
[2] Shi, Y., N. Feilchenfeld, R. Phelps, M. Levy, M. Knaipp, and R. Minixhofer (2011), “Drift Design Impact on Quasi-Saturation & HCI for Scalable N-LDMOS”, IEEE International Symposium on Power Semiconductor Devices & IC's, San Diego, May, pp.215~218
[3] Klein, N., S. Levin, G. Fleishon, S. Levy, A. Eyal, and S. Shapira (2008), “Device design tradeoffs for 55v LDMOS driver embedded in 0.18 micronplatform”, IEEE 25th Convention of Electrical and Electronics Engineers in Israel, 2008. IEEEI 2008., Eilat, December, pp. 736~740
[4] Aresu, S., R. Vollertsen, R. Rudolf, C. Schlünder, H. Reisinger and W. Gustin (2012), “Physical Understanding and Modelling of new Hot Carrier Degradation Effect on PLDMOS Transistor”, Reliability Physics Symposium (IRPS), 2012 IEEE International, Anaheim, April, pp. XT.11.1~XT.11.6
[5] Agilent Technologies, B1500A semiconductor device analysis introduction, http://www.home.agilent.com/zh-TW/pd-582565-pn-B1500A/semiconductor-device-analyzer
[6] Swin Super Solution & Service, http://www.3-s.com.tw/prod_other _c.html
[7] Jie, Bin Bin, W. K. Chim, Ming-Fu Li , and K. F. Lo (2001), “Analysis of the DCIV Peaks in Electrically Stressed pMOSFETs”, IEEE Transactions on Electron Devices, 48(5), pp. 913~920
[8] He, Y. and G. Zhang (2011), “Method for Direct Characterizing Interface Traps in STI-type HV SOI LDMOSFETs,” SOI Conference (SOI), 2011 IEEE International, Tempo, October, pp. 1~2
[9] He, Y. ,G. Zhang, L. Han, and X. Zhang (2012), “Multiregion DCIV: A Sensitive Tool for Characterizing the Si/SiO2 Interfaces in LDMOSFETs”, IEEE Electron Device Letter, 33(10), pp. 1435~1437
Chapter 3
[1] Su, R.Y., P. Y. Chiang, J. G., Tsung Yi Huang, C.L. Tsai, C. C. Chou, and C. M. Liu (2008), “Investigation on the Initial Hot-Carrier Injection in P-LDMOS Transistors With Shallow Trench Isolation Structure”, IEEE Transactions on Electron Devices, 55(12), pp. 3569~3574
[2] Enichlmair, H., J. M. Park, S. Carniello, B. Loeffler, and R. Minixhofer (2009), “Hot Carrier Stress Degradation Modes in P-type High Voltage LDMOS Transistors”, Reliability Physics Symposium (IRPS), 2009 IEEE International, Montreal, April, pp.426~431
[3] Han, K. Michael and Chih-Tang Sah (1998), “Reduction of interface traps in p-channel MOS transistors during channel-hot-hole stress”, IEEE Transactions on Electron Devices, 45(6), pp. 1380~1382
[4] Stanley, Alan G. (1967), “Effect of Electron Irradiation on Carrier Mobilities in Inversion Layers of Insulated Gate Field Effect Transistors”, IEEE Transactions on Nuclear Science, NS-14(6), pp. 266~275
[5] Ong, T., Ko, P.-K., and Chenming Hu (1990), “Hot-carrier current modeling and device degradation in surface-channel p-MOSFETs,” IEEE Transactions on Electron Devices, 37(7), pp. 1658~1666
[6] Aresu, S., R. Vollertsen, R. Rudolf, C. Schlünder, H. Reisinger and W. Gustin (2012), “Physical Understanding and Modelling of new Hot-Carrier Degradation Effect on PLDMOS Transistor”, Reliability Physics Symposium (IRPS), 2012 IEEE International, Anaheim, April, pp. XT.11.1~XT.11.6
[7] Tsujikawa, S., M. Kanno, and Naoki Nagashima (2011), “Reliable Assessment of Progressive Breakdown in Ultrathin MOS Gate Oxides Toward Accurate TDDB Evaluation”, IEEE Transactions on Electron Devices, 58(5), pp. 1468~1475
[8] Tian, K., Jone F. Chen, S. Chen, K. Wu1, and J. R. Lee, T. Huang, C. M. Liu, and S. L. Hsu (2008), “An Investigation on Hot-Carrier Reliability and Degradation Index in Lateral Diffused Metal–Oxide–Semiconductor Field-Effect Transistors”, Japanese Journal of Applied Physics (JJAP), 47(4S), , pp. 2641~2644
Chapter 4
[1] Wang, Z., J. Ackaert, C. Salm, E. Backer de, G. Bosch van den and W. Zawalski (2002), “Correlation between Hot Carrier Stress, Oxide Breakdown and Gate Leakage Current for Monitoring Plasma Processing Induced Damage on Gate Oxide”, Proceedings of the 9th International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA, Singapore, Thailand , July, pp. 242~245
[2] Labate, L., S. Manzini, and R. Roggero (2003), “Hot-Hole-Induced Dielectric Breakdown in LDMOS Transistors”, IEEE Transactions on Electron Devices, 50 (2), pp. 372~377
[3] Huang, Y.H., J.R. Shih, C.C. Liu, Y,H, Lee, R. Ranjan, P.Y. Chiang, D.C. Ho, and K. Wu (2011), “Investigation of Multistage Linear Region Drain Current Degradation and Gate-Oxide Breakdown Under Hot-Carrier Stress in BCD HV PMOS”, Reliability Physics Symposium, 2011 IEEE International, Monterey, April, pp. 5A.3.1~5A.3.5
[4] Tsujikawa, S., M. Kanno, and Naoki Nagashima (2011), “Reliable Assessment of Progressive Breakdown in Ultrathin MOS Gate Oxides Toward Accurate TDDB Evaluation”, IEEE Transactions on Electron Devices, 58(5), pp. 1468~1475
[5] Depas, M., T. Nigam, and M. M. Heyns (1996), “Soft Breakdown of Ultra-Thin Gate Oxide Layers”, IEEE Transactions on Electron Devices, 43(59), pp. 1499~1504
[6] Aresu, S., R. Vollertsen, R. Rudolf, C. Schlünder, H. Reisinger and W. Gustin (2012), “Physical Understanding and Modelling of new Hot Carrier Degradation Effect on PLDMOS Transistor,” Reliability Physics Symposium (IRPS), 2012 IEEE International, Anaheim, April, pp. XT.11.1~XT.11.6