簡易檢索 / 詳目顯示

研究生: 黃楷婷
Huang, Kai-Ting
論文名稱: 低氧環境對醫生材料生物反應性影響之研究
The effect of hypoxia on the biological response of biomaterials
指導教授: 李澤民
Lee, Tzer-Min
共同指導教授: 胡晉嘉
Hu, Jin-Jia
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 136
中文關鍵詞: 吹沙酸蝕微弧氧化含鍶微弧氧化低氧處理
外文關鍵詞: Sandblasted and acid-etched, Micro-arc oxidized, Strontium micro-arc oxidized, Hypoxia treatment
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來發展並採用植入式的人工牙根日益普及,金屬鈦以及其合金擁有良好的化學穩定性與生物相容性,廣泛被應用於骨科與牙科領域,然而於臨床上仍被視為生物惰性,因此如何進行有效材料改質,並模擬於生物體內的實際情形,改善生物活性進而提升骨整合是研究的主要關鍵。
      本實驗利用噴砂酸蝕(SLA)的技術,使鈦表面同時具有微米與次微米等級的孔洞結構,並運用前處理控制粗糙度。接著配合微弧氧化技術(MAO)使表面具有孔洞形態的氧化層,並透過製備含不同鍶濃度(Sr)來改變其化學組成。人體內的氧濃度相較於正常大氣下是低氧含量,因此生物實驗設計在低氧(hypoxia)環境下進行,細胞培養分別控制在不同氧濃度下進行實驗。
      由掃描式電子顯微鏡觀察SLA 、MAO表面呈現均勻結構,粗糙儀測得由噴沙壓力控制順利產生不同粗糙度的SLA表面,化學組成與晶體結構分別利用EDS與XRD測試MAO與 SrMAO表面,在不同低氧濃度下培養細胞,進行生物毒性測試(MTT)、生物活性測試(ALP)。結果顯示在經過SLA處理的表面型態、SrMAO含鍶的氧化層組成,,並且在低氧的環境下均呈現良好的生物反應。

    There is a growing popularity of dental implants in the market. Titanium (Ti) and its alloys are among the most successful implantable materials for dental and orthopedic applications due to the properties of good chemical stability and biocompatibility. Still, they are considered to be bio-inert materials in clinical.
    In this study, cell culture study performed under 1%, 5%, and 10% hypoxic stress simulating the condition in the human body to compare with that under normal atmospheric oxygen tension of 21%. First, the Ti discs were prepared to increase and control roughness by different pressure of sandblasting (SB). Combined acid-etching (SLA) to obtain both micron and sub-micron structure on the surface. Then, the micro-arc oxidation (MAO) technique was used to improve the characteristics on Ti surface. MAO coating formed in the electrolytes with different strontium (Sr) content. Pre-osteoblastic cells MC3T3-E1 was chosen for cell behavior evaluation in vitro.
    From the observation of scanning electron microscope (SEM) images, all modified surfaces had uniform porous structure, including SLA, MAO, and SrMAO. Surface analyzer showed that SB pressure can control the roughness of SLA well. Used energy dispersive X-ray spectrometer (EDS) for chemical composition and different Sr content was detected in the oxide coating of MAO. Thin film X-ray diffraction (TF-XRD) results indicated the phase of MAO coating was anatase and rutile. Cell culture experiments demonstrated that surface modification and Sr content will improve the growth of MC3T3-E1, especially in hypoxia condition with significant differences.

    Chapter 1 Introduction 1 1.1 Background 1 1.2 Dental titanium 2 1.3 Surface modification of dental implants 3 1.4 Micro-arc oxidation 6 1.5 Calcium phosphate 9 1.6 Strontium 11 1.7 Hypoxia 12 1.8 Motivation and objective 15 Chapter 2 Materials and Methods 17 2.1 Experimental procedure 17 2.2 Specimen preparation 17 2.2.1 Titanium substrates 17 2.2.2 Sandblasted (SB) 18 2.2.3 Sandblasted and acid-etched (SLA) 18 2.2.4 Micro-arc oxidized (MAO) 18 2.2.5 Strontium Micro-arc oxidized (SrMAO) 19 2.3 Specimens surface characteristic analysis 20 2.3.1 Surface morphology and chemical composition 20 2.3.2 Surface phase composition analysis 20 2.3.3 Surface roughness 20 2.3.4 Surface wettability 21 2.4 In vitro tests 21 2.4.1 Cell culture 21 2.4.2 Sample sterilization 21 2.4.3 Cell adhesion and proliferation 22 2.4.4 MTT assay 22 2.4.5 Alkaline phosphatase activity assay 23 2.4.6 Cell immobilization 25 2.5 Hypoxia treatment 26 2.6 Statistical analysis 26 Chapter 3 Results 27 3.1 Specimens of SLA characteristic analysis 27 3.1.1 Surface morphology 27 3.1.2 Chemical composition analysis 27 3.1.3 Phase composition analysis 28 3.1.4 Surface roughness 28 3.1.5 Surface wettability 28 3.2 SLA system for hypoxia in vitro test 29 3.2.1 Cell adhesion and morphology 29 3.2.2 Cell proliferation 29 3.2.3 Cell differentiation 31 3.3 Specimens of MAO characteristic analysis 32 3.3.1 Surface morphology 32 3.3.2 Chemical composition analysis 32 3.3.3 Phase composition analysis 33 3.3.4 Surface roughness 33 3.3.5 Surface wettability 33 3.4 MAO and SrMAO system for hypoxia in vitro test 34 3.4.1 Cell adhesion and morphology 34 3.4.2 Cell proliferation 34 3.4.3 Cell differentiation 35 Chapter 4 Discussion 37 Chapter 5 Conclusions 43 Reference 45

    1. Assis SeLd, Wolynec S, Costa I: Corrosion characterization of titanium alloys by electrochemical techniques. Electrochimica Acta 2006, 51:1815-1819.
    2. Shidid DP, M.HoseinpourGollo, M.Brandt, M.Mahdavian: Study of effect of process parameters on titanium sheet metal bending using Nd: YAG laser. Optics & Laser Technology 2013, 47:242-247.
    3. Yazici H, Fong H, Wilson B, Oren EE, Amos FA, Zhang H, Evans JS, Snead ML, Sarikaya M, Tamerler C: Biological response on a titanium implant-grade surface functionalized with modular peptides. Acta Biomaterialia 2013, 9:5341-5352.
    4. Jonasova L, uller FAM, Helebrant A, Strnad J, Greil P: Biomimetic apatite formation on chemically treated titanium. Biomaterials 2004, 25:1187-1194.
    5. Brinemark P-I: Osseointegration and its experimental background. The Journal of Prosthetic Dentistry 1983, 50:399-410.
    6. Gonza´lez JEG, Mirza-Rosca JC: Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. Journal of Electroanalytical Chemistry 1999, 471:109-115.
    7. Li Y, Zou S, Wang D, Feng G, Bao C, Hu J: The effect of hydrofluoric acid treatment on titanium implant osseointegration in ovariectomized rats. Biomaterials 2010, 31:3266-3273.
    8. Baldassarri M, Bonfante EA, Suzuki M, Marin C, Granato R, Tovar N, Coelho PG: Mechanical properties of human bone surrounding plateau root form implants retrieved after 0.3-24 years of function. Journal of Biomedical Materials Research B 2012, 100B:2015-2021.
    9. Khan MR, Donos N, Salih V, Brett PM: The enhanced modulation of key bone matrix components by modified Titanium implant surfaces. Bone 2012, 50:1-8.
    10. Liu X, Chu PK, Ding C: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering R 2004, 47:49-121.
    11. Puippe JC: Surface treatments of titanium implants. European Cells and Materials 2003, 5:32-33.
    12. Gu´ehennec LL, Soueidan A, Layrolle P, Amouriq Y: Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials 2007, 23:844-854.
    13. Groot Kd, Geesink R, Klein CPAT, Serekian P: Plasma sprayed coatings of hydroxylapatite. Journal of Biomedical Materials Research 1987, 21:1375-1381.
    14. Yang Y, Kim K-H, Ong JL: A review on calcium phosphate coatings produced using a sputtering process - an alternative to plasma spraying. Biomaterials 2005, 26:327-337.
    15. Hakki SS, Bozkurt SB, Hakki EE, Korkusuz P, Purali N, Koc Ne, Timucin M, Ozturk A, Korkusuz F: Osteogenic differentiation of MC3T3-E1 cells on different titanium surfaces. Biomedical Materials 2012, 7.
    16. Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, Schwartz Z, Sandhage KH, Boyan BD: The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 2011, 32:3395-3403.
    17. Wang X-X, Hayakawa S, Tsuru K, Osaka A: Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 2002, 23:1353-1357.
    18. Zhang E, Wang YB, Shuai KG, Gao F, Bai YJ, Cheng Y, Xiong XL, Zheng YF, CWei S: In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment. Biomedical Materials 2011, 6.
    19. Zhuang X-M, Zhou B, Ouyang J-L, Sun H-P, Wu Y-L, Liu1 Q, Deng F-L: Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces. Biomedical Materials 2014, 9.
    20. Massaro C, Rotolo P, Riccardis FD, Milella E, Napoli A, Wieland M, Textor M, Spencer ND, Brunette DM: Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. Journal of Materials Science: Materials in Medicine 2002, 13:535-548.
    21. Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D: Time-dependent morphology and adhesion of osteoblasticc ells on titanium model surfaces featuring scale-resolved topography. Biomaterials 2004, 25:2695-2711.
    22. Huang C-F, Chiang H-J, Lin H-J, Hosseinkhani H, Ou K-L, Peng P-W: Comparison of cell response and surface characteristics on titanium implant with SLA and SLAffinity functionalization. Journal of The Electrochemical Society 2014, 161:G15-G20.
    23. Wei D, Zhou R, Cheng S, Feng W, Yang H, Du Q, Li B, Wang Y, Jia D, Zhou Y: MC3T3-E1 cells' response and osseointegration of bioactive sphene–titanium oxide composite coatings fabricated by a hybrid technique of microarc oxidation and heat treatment on titanium. Journal of Materials Chemistry B 2014, 2:2993-3008.
    24. Azumi K, Yasui N, Seo M: Changes in the properties of anodic oxide films formed on titanium during long-term immersion in deaerated neutral solutions. Corrosion Science 2000, 42:885-896.
    25. Yoriyaa S, Grimes CA: Self-assembled anodic TiO2 nanotube arrays: electrolyte properties and their effect on resulting morphologies. Journal of Materials Chemistry 2011, 21:102-108.
    26. Han Y, Hong S-H, Xu KW: Porous nanocrystalline titania films by plasma electrolytic oxidation. Surface and Coatings Technology 2002, 154:314-318.
    27. Meyer S, Gorges R, Kreisel G: Preparation and characterisation of titanium dioxide films for catalytic applications generated by anodic spark deposition. Thin Solid Films 2004, 450:276-281.
    28. Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ: Plasma electrolysis for surface engineering. Surface and Coatings Technology 1999, 122:73-93.
    29. Chen H-T, Hsiao C-H, Long H-Y, Chung C-J, Tang C-H, Chen K-C, He J-L: Micro-arc oxidation of β-titanium alloy: Structural characterization and osteoblast compatibility. Surface & Coatings Technology 2009, 204:1126-1131.
    30. Yan Y, Sun J, Han Y, Li D, Cui K: Microstructure and bioactivity of Ca, P and Sr doped TiO2 coating formed on porous titanium by micro-arc oxidation. Surface & Coatings Technology 2010, 205:1702-1713.
    31. Yetim AF: Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions. Surface & Coatings Technology 2010, 205:1757-1763.
    32. Alsaran A, Purcek G, Hacisalihoglu I, Vangolu Y, Bayrak Ö, Karaman I, Celik A: Hydroxyapatite production on ultrafine-grained pure titanium by micro-arc oxidation and hydrothermal treatment. Surface & Coatings Technology 2011, 205:S537-S542.
    33. Shin KR, Ko YG, Shin DH: Effect of electrolyte on surface properties of pure titanium coated by plasma electrolytic oxidation. Journal of Alloys and Compounds 2011, 509S:S478-S481.
    34. Yao ZQ, Ivanisenko Y, Diemant T, Caron A, Chuvilin A, Jiang JZ, Valiev RZ, Qi M, Fecht H-J: Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation. Acta Biomaterialia 2010, 6:2816-2825.
    35. Chung C-J, Long H-Y: Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast responses. Acta Biomaterialia 2011, 7:4081-4087.
    36. Song W-H, Ryu HS, Hong S-H: Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation. Journal of Biomedical Materials Research Part A 2009, 88A:246-254.
    37. Li L-H, Kong Y-M, Kim H-W, Kim Y-W, Kim H-E, Heo S-J, Koak J-Y: Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004, 25:2867-2875.
    38. Chen H-T, Chung C-J, Yang T-C, Chiang I-P, Tang C-H, Chen K-C, He J-L: Osteoblast growth behavior on micro-arc oxidized β-titanium alloy. Surface & Coatings Technology 2010, 205:1624-1629.
    39. Mahamid J, Sharir A, Gur D, Zelzer E, Addadi L, Weiner S: Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: A cryo-electron microscopy study. Journal of Structural Biology 2011, 174:527-535.
    40. Shadanbaz S, Dias GJ: Calcium phosphate coatings on magnesium alloys for biomedical applications: A review. Acta Biomaterialia 2012, 8:20-30.
    41. Bose S, Tarafder S: Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomaterialia 2012, 8:1401-1421.
    42. Heinemann S, Heinemann C, Wenisch S, Alt V, Worch H, Hanke T: Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomaterialia 2013, 9:4878-4888.
    43. Ginebra M-P, Canal C, Espanol M, Pastorino D, Montufar EB: Calcium phosphate cements as drug delivery materials. Advanced Drug Delivery Reviews 2012, 64:1090-1110.
    44. Li J, Chen Y-C, Tseng Y-C, Mozumdar S, Huang L: Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. Journal of Controlled Release 2010, 142:416-421.
    45. Chai YC, Roberts SJ, Bael SV, Chen Y, Luyten FP, Schrooten J: Multi-level factorial analysis of Ca2+ /Pi supplementation as bio-instructive media for in vitro biomimetic engineering of three-dimensional osteogenic hybrids. Tissue Engineering: Part C 2012, 18:90-103.
    46. Dorozhkin SV: Bioceramics of calcium orthophosphates. Biomaterials 2010, 31:1465-1485.
    47. Drouet C, Bosc F, Banu M, Largeot C, Combes C, Dechambre G, Estournès C, Raimbeaux G, Rey C: Nanocrystalline apatites: From powders to biomaterials. Powder Technology 2009, 190:118-122.
    48. Abdeltawab AA, Shoeib MA, Mohamed SG: Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions. Surface & Coatings Technology 2011, 206:43-50.
    49. Choudhury P, Agrawal DC: Sol-gel derived hydroxyapatite coatings on titanium substrates. Surface & Coatings Technology 2011, 206:360-365.
    50. Demnati I, Parco M, Grossin D, Fagoaga I, Drouet C, Barykin G, Combes C, Braceras I, Goncalves S, Rey C: Hydroxyapatite coating on titanium by a low energy plasma spraying mini-gun. Surface & Coatings Technology 2012, 206:2346-2353.
    51. Ohtsu N, Nakamura Y, Semboshi S: Thin hydroxyapatite coating on titanium fabricated by chemical coating process using calcium phosphate slurry. Surface & Coatings Technology 2012, 206:2616-2621.
    52. Piattelli A, Scarano A, Alberti LD, Piattelli M: Bone-hydroxyapatite interface in retrieved hydroxyapatite-coated titanium implants: A clinical and histologic report. The International Journal of Oral & Maxillofacial Implants 1999, 14:233-238.
    53. Anselme K: Osteoblast adhesion on biomaterials. Biomaterials 2000, 21:667-681.
    54. Obata A, Kasuga T, Jones JR: Hydroxyapatite coatings incorporating silicon ion releasing system on titanium prepared using water glass and vaterite. Journal of the American Ceramic Society 2011, 94:2074-2079.
    55. Xia W, Lindahl C, Lausmaa J, Borchardt P, Ballo A, Thomsen P, Engqvist H: Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces. Acta Biomaterialia 2010, 6:1591-1600.
    56. Yang L, Perez-Amodio S, Groot FYFB-d, Everts V, Blitterswijk CAv, Habibovic P: The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts. Biomaterials 2010, 31:2976-2989.
    57. Rosenthal HL, Cochban OA, Eves MM: Strontium content of mammalian bone, diet and excreta. Environmental Research 1972, 5:182-191.
    58. Acar O, Türker AR, lıç ZK: Flame atomic absorption spectrometric determination of iron, magnesium, strontium and zinc in human teeth using La + K mixture. Acta Chim Slov 2008, 55:462-467.
    59. Rosenthal HL, Eves MM, Cochran OA: Common strontium concentration of mineralized tissues from marine and sweet water animals. Comp Bioehem Physiol 1970, 32:445-450.
    60. Nielsen SP: The biological role of strontium. Bone 2004, 35:583-588.
    61. Maïmoun L, Brennan TC, Badoud I, Dubois-Ferriere V, Rizzoli R, Ammann P: Strontium ranelate improves implant osseointegration. Bone 2010, 46:1436-1441.
    62. Li Y, Li X, Song G, Chen K, Yin G, Hu J: Effects of strontium ranelate on osseointegration of titanium implant in osteoporotic rats. Clinical Oral Implants Research 2012, 23:1038-1044.
    63. Zhang D, Wang X, Liu M, Zhang L, Deng M, Liu H: Quantification of strontium in human serum by ICP-MS using alternate analyte-free matrix and its application to a pilot bioequivalence study of two strontium ranelate oral formulations in healthy Chinese subjects. Journal of Trace Elements in Medicine and Biology 2014, 29:69-74.
    64. Ammann P: Strontium ranelate: A novel mode of action leading to renewed bone quality. Osteoporos Int 2005, 16:S11-S15.
    65. Yang C-Y, Chen C-H, Wang H-Y, Hsiao H-L, Hsiao Y-H, Chung W-H: Strontium ranelate related Stevens-Johnson syndrome: a case report. Osteoporosis International 2014, 25:1813-1816.
    66. Bruyere O, Reginster J-Y, Bellamy N, Chapurlat R, Richette P, Cooper C: Clinically meaningful effect of strontium ranelate on symptoms in knee osteoarthritis: a responder analysis. Rheumatology 2014.
    67. Reginster J-Y, Beaudart C, Neuprez A, Bruyère O: Strontium ranelate in the treatment of knee osteoarthritis: new insights and emerging clinical evidence. Therapeutic Advances in Musculoskeletal Disease 2013, 5:268-276.
    68. Ammann P, Shen V, Robin B, Mauras Y, Bonjour J-P, Rizzoli R: Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. Journal of Bone and Mineral Research 2004, 19:2012-2020.
    69. Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ: The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 1996, 18:517-523.
    70. Li L, Lu X, Meng Y, Weyant CM: Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical deposition and air plasma spray: morphology, composition and bioactive performance. Journal of Materials Science: Materials in Medicine 2012, 23:2359-2368.
    71. Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C: Incorporation and distribution of strontium in bone. Bone 2001, 28:446-453.
    72. Ni G-X, Shu B, Huang G, Lu WW, Pan H-B: The effect of strontium incorporation into hydroxyapatites on their physical and biological properties. Journal of Biomedical Materials Research B: Applied Biomaterials 2012, 100B:562-568.
    73. Tian M, Chen F, Song W, Song Y, Chen Y, Wan C, Yu X, Zhang X: In vivo study of porous strontium-doped calcium polyphosphate scaffolds for bone substitute applications. J Mater Sci: Mater Med 2009, 20:1505-1512.
    74. Yang F, Yang D, Tu J, Zheng Q, Cai L, Wang L: Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating wnt/catenin signaling. Stem Cells 2011, 29:981-991.
    75. Singh SS, Roy A, Lee BE, Ohodnicki J, Loghmanian A, Banerjee I, Kumta PN: A study of strontium doped calcium phosphate coatings on AZ31. Materials Science and Engineering C 2014, 40:357-365.
    76. Wu D, Yotnda P: Induction and testing of hypoxia in cell culture. Journal of Visualized Experiments 2011.
    77. Devaraj D, Srisakthi D: Hyperbaric oxygen therapy–Can it be the new era in dentistry? Journal of Clinical and Diagnostic Research 2014, 8:263-265.
    78. Lewis JS, Lee JA, Underwood JCE, Harris AL, Lewis CE: Macrophage responses to hypoxia: relevance to disease mechanisms. Journal of Leukocyte Biology 1999, 66:889-900.
    79. Indovina P, Rainaldi G, Santini MT: Hypoxia increases adhesion and spreading of MG-63 three-dimensional tumor spheroids. Anticancer Research 2008, 28:1013-1022.
    80. Lu Z, Zhang W, Jiang S, Zou J, Li Y: Effect of oxygen tensions on the proliferation and angiogenesis of endometriosis heterograft in severe combined immunodeficiency mice. Fertility and Sterility 2014, 101:568-576.
    81. Kim J, Andersson K-E, Jackson JD, Lee SJ, Atala A, Yoo JJ: Downregulation of metabolic activity increases cell survival under hypoxic conditions: potential applications for tissue engineering. Tissue Engineering 2014, 20:2265-2272.
    82. ChengtieWu, Zhou Y, Fan W, Han P, Chang J, Yuen J, Zhang M, Xiao Y: Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 2012, 33:2076-2085.
    83. Götz W, Reichert C, Canullo L, Jäger A, Heinemann F: Coupling of osteogenesis and angiogenesis in bone substitute healing–A brief overview. Annals of Anatomy 2012, 194:171-173.
    84. Utting JC, Robins SP, Brandao-Burch A, Orriss IR, Behar J, Arnett TR: Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Experimental Cell Research 2006, 312:1693-1702.
    85. Iida K, Takeda-Kawaguchi T, Tezuka Y, Kunisada T, Shibata T, Tezuka K-i: Hypoxia enhances colony formation and proliferation but inhibits differentiation of human dental pulp cells. Archives of Oral Biology 2010, 55:648-654.
    86. Leijten J, Georgi N, Teixeira LM, Blitterswijk CAv, Post JN, Karperien M: Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate. PNAS 2014, 111:13954-13959.
    87. Lafont JE, Talma S, Hopfgarten C, Murphy CL: Hypoxia promotes the differentiated human articular chondrocyte phenotype through SOX9-dependent and -independent pathways. The Journal of Biological Chemistry 2008, 283:4778-4786.
    88. Schipani E, Maes C, Carmeliet G, Semenza GL: Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. Journal of Bone and Mineral Research 2009, 24:1347-1353.
    89. Matsuda N, Morita N, Matsuda K, Watanabe M: Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochemical and Biophysical Research Communications 1998, 249:350-354.
    90. XU G, XUE M, WANG H, XIANG C: Hypoxia‑inducible factor‑1α antagonizes the hypoxia‑mediated osteoblast cell viability reduction by inhibiting apoptosis. Experimental and Therapeutic Medicine 2015, 9:1801-1806.
    91. Son J-H, Cho Y-C, Sung I-Y, Kim I-R, Park B-S, Yong-Deok, Kim: Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways. Journal of Pineal Research 2014, 57:385-392.

    無法下載圖示 校內:2030-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE