| 研究生: |
蕭詠泰 Hsiao, Yung-Tai |
|---|---|
| 論文名稱: |
雙坡度岩盤對Gilbert三角洲發展之研究 Study of Gilbert deltas over dual-slope bedrock |
| 指導教授: |
賴悅仁
Lai, Yueh Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | Gilbert三角洲 、物理模型實驗 、自我相似 、解析解 、水庫淤砂 |
| 外文關鍵詞: | Gilbert delta, Physical experiment, Self-similarity, Analytical solution. |
| 相關次數: | 點閱:203 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當上游河流夾帶大量粗顆粒土砂進入湖泊或水庫時,會在河川與水庫水位線之交界處形成三角洲,Lorenzo-Trueba et al. [2009]曾提出包含兩個移動邊界於單一坡度上發展之Gilbert三角洲之實驗與理論分析,Lai and Capart [2009]也曾指出異重流三角洲(Hyperpycnal delta)及Gilbert三角洲在單一坡度上具有自我相似(self similarity)之實驗與理論分析。然而,少有研究指出在雙坡度岩盤上發展之三角洲是否保有自我相似之特性。本研究以解析解及小尺度物理模型實驗定量地探討水上及水下底床坡度改變時對Gilbert三角洲形貌之影響,並追蹤三角洲上緣(topset)與水面線之交點(shoreline)、三角洲上緣與岩盤之交點(bedrock-alluvial transition)及三角洲坡趾(delta toe)隨時間之演化過程。實驗中我們精準地控制上游之輸砂量(Q_s)、輸水量(Q_w)、水上底床坡度(S_1)及水下底床坡度(S_2)以進行定量的實驗與理論分析。實驗中透過每五秒的間格攝影以記錄三角洲之發展過程,並以數位影像處理定量測量出三角洲之底床高程隨時間之變化。實驗結果顯示當Gilbert三角洲在雙坡度岩盤上發展時會呈現不對稱的效應存在,在增加上游岩盤坡度時會加快三角洲往上加積及往前堆積之速率,使三角洲之shoreline往前堆積且bedrock-alluvial transition會因為岩盤底床的限制而只能稍微地往上游移動。相對地,增加水下底床坡度時反而會限制三角洲topset的發展並抑止bedrock-alluvial transition往上游移動的範圍;shoreline則會往原點移動,使三角洲的foreset呈現一狹長形的形貌。
A Gilbert delta forms at the shoreline by homopycnal flows, of which the density of inflow and receiving basin is the same. A delta evolving over bedrock channel involves two internal moving boundaries. Lorenzo-Trueba et al. [2009] reported experimental and theoretical analysis of a Gilbert delta over bedrock with single basement slope. In the same year, Lai and Capart [2009] also reported experimental and theoretical analysis of both hyperpycnal and Gilbert deltas over a single basement slope, and revealed different similarities within deltas. However, few researches had addressed whether a Gilbert delta over dual-slope bedrock exist self-similarity. In this study, we derive a new analytical solution and use small-scale experiments to explore the morphodynamics of a Gilbert delta over dual-slope bedrock channel. In experiment, we control upstream sediment(Q_s)、inflow(Q_w)、subaerial slope(S_1) and subaqueous slope(S_2) for quantitatively analysis. We use time lapse photograph to record the delta evolution every five seconds and measure the change of delta elevation with time by digital image processing. Our result, show that there is an asymmetric effect when a Gilbert delta develops over a dual-slope bedrock. An increase of subaerial slope pushes the delta forward and upward, giving rise to forward migration of shoreline and suppressed headward migration of bedrock-alluvial transition. In contrast, an increase of subaqueous slope pushes down the delta, suppressing the headward migration of bedrock-alluvial transition and forward migration of shoreline.
Ahmed, K. B., and M. Sanchez [2011], A study of the factors and processes involved in the sedimentation of Tarbela reservoir, Pakistan, Environmental earth sciences, 62(5), 927-933.
Begin, Z. [1981], The relationship between flow-shear stress and stream pattern, Journal of Hydrology, 52(3-4), 307-319.
Boyer, J., C. Duvail, P. Le Strat, B. Gensous, and M. Tesson [2005], High resolution stratigraphy and evolution of the Rhône delta plain during Postglacial time, from subsurface drilling data bank, Marine Geology, 222, 267-298.
Capart, H., M. Bellal, and D.-L. Young [2007], Self-similar evolution of semi-infinite alluvial channels with moving boundaries, Journal of Sedimentary Research, 77(1), 13-22.
Colella, A. [1988], Fault-controlled marine Gilbert-type fan deltas, Geology, 16(11), 1031-1034.
Fraccarollo, L., and H. Capart (2002), Riemann wave description of erosional dam-break flows, Journal of Fluid Mechanics, 461, 183-228.
Geleynse, N., M. Hiatt, H. Sangireddy, and P. Passalacqua [2015], Identifying environmental controls on the shoreline of a natural river delta, Journal of Geophysical Research: Earth Surface, 120(5), 877-893.
Gilbert, G. K. [1890], Lake Bonneville, US Government Printing Office.
Grover, N. C., and C. S. Howard [1938], The passage of turbid water through Lake Mead, Transactions of the American Society of Civil Engineers, 103(1), 720-781.
Lai, S. Y. J., and H. Capart [2007], Two‐diffusion description of hyperpycnal deltas, Journal of Geophysical Research: Earth Surface, 112(F3).
Lai, S. Y. J., and H. Capart [2009], Reservoir infill by hyperpycnal deltas over bedrock, Geophysical Research Letters, 36(8).
Lai, S. Y. J., Y. T. Hsiao and F.- C. Wu*, Asymmetric effects of fluvial and subaqueous bedrock slopes on Gilbert delta, Journal of Geophysical Research-Earth Surface, in revision.
Lorenzo-Trueba, J., V. R. Voller, T. Muto, W. Kim, C. Paola, and J. B. Swenson [2009], A similarity solution for a dual moving boundary problem associated with a coastal-plain depositional system, Journal of Fluid Mechanics, 628, 427-443.
Morris, G., and F. Jiahua [1997], Reservoir Sedimentation HandbookMcGraw Hill, New York.
Paola, C. [2000], Quantitative models of sedimentary basin filling, Sedimentology, 47(s1), 121-178.
Paola, C., and V. Voller [2005], A generalized Exner equation for sediment mass balance, Journal of Geophysical Research: Earth Surface, 110(F4).
Patruno, S., G. J. Hampson, and C. A. Jackson [2015], Quantitative characterisation of deltaic and subaqueous clinoforms, Earth-Science Reviews, 142, 79-119.
Smith, W. O., C. Vetter, and G. Cummings [1960], Comprehensive survey of sedimentation in Lake Mead, 1948-49, US Government Printing Office.
Swenson, J., V. Voller, C. Paola, G. Parker, and J. Marr [2000], Fluvio-deltaic sedimentation: A generalized Stefan problem, European Journal of Applied Mathematics, 11(05), 433-452.
Voller, V., J. Swenson, and C. Paola [2004], An analytical solution for a Stefan problem with variable latent heat, International Journal of Heat and Mass Transfer, 47(24), 5387-5390.