簡易檢索 / 詳目顯示

研究生: 簡仕傑
Jian, Shih-Jie
論文名稱: 紊流奈米流體在三維波形渠道中的數值模擬與最佳化
Numerical simulation and optimization of turbulent nanofluids in a three-dimensional wavy channel
指導教授: 楊玉姿
Yang, Yue-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 124
中文關鍵詞: 紊流奈米流體波形渠道單相模型兩相模型基因演算法最佳化
外文關鍵詞: Turbulent, Nanofluids, Wavy channel, Single-phase model, Two-phase model, Genetic algorithm, Optimization
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以單相與兩相模型模擬奈米流體於均勻等壁溫三維波形渠道紊流強制對流之數值計算。應用控制體積法數值求解紊流強制對流奈米流體之橢圓、耦合、穩態之三維統御偏微分方程式。統御方程式則使用標準 紊流模型求解。研究參數包含雷諾數 、奈米粒子體積濃度、波形之振幅與波長。首先以參考文獻中紊流奈米流體於平滑渠道之數據作驗證,其結果相當吻合,最大誤差在2%內,再進一步延伸應用至波型渠道。
    文中比較兩種不同波形渠道在等溫壁面時的平均紐賽數,模擬結果顯示對稱式渠道之平均紐賽數較對齊式渠道來的好。數值結果顯示,單相與兩相模型模擬結果在流場與紊流對流熱傳特性有些許的不同。三種兩相模型模擬所得熱場,除了尤拉模型外,幾乎相同;而兩相模型所得數值結果與單相模型則有些微的差異。在研究範圍內,波形渠道之平均紐賽數,會隨著雷諾數、振幅與波長增加而增加。
    此外,比較單相與兩相模型的數值結果後,最佳化以多重參數並結合實驗設計(DOE)、反應曲面法(RSM),藉由基因演算法(GA)及計算流體力學(CFD)設計三維波形渠道中紊流對流問題。選擇三個無因次設計參數分別為波形之振幅、波長與體積濃度。以熱性能係數E為目標函數,並與三設計參數產生關係式。此後利用迴歸函數預測對齊與對稱式渠道之熱性能係數,其結果與數值結果相當接近,其誤差分別在6.3%和3.3%內。而所得設計參數的組合即為最佳解。

    In this study, numerical calculations by single-phase and two-phase models of nanofluid turbulent forced convection in a three-dimensional wavy channel with uniform wall temperature are investigated. The elliptical, coupled, steady-state, three-dimensional governing partial differential equations for turbulent forced convection of nanofluids are solved numerically using the finite volume approach. The governing equations are solved with the standard turbulent model. The parameters studied include Reynolds number, nanoparticle volume concentration, wavy channel amplitude and wavy length. The numerical results are validated with the turbulent nanofluids in a smooth channel in the literature first, the maximum discrepancy within 2%, and then further extend to a wavy channel.
    Two different types of wavy channels are considered and their average Nusselt number for a constant wall temperature is compared. The predicted average Nusselt number of the symmetric wavy channel shows better than that in-line wavy channel. The numerical results of the proposed models indicate the flow field and turbulent convective heat transfer characteristics have some differences for single and two-phase models. The thermal field predictions by the three two-phase models are essentially the same except the Eulerian model but very far from the numerical results of single-phase model. In the range of parameters in the study, the average Nusselt number of the wavy channel considered is found to improve with increase in Reynolds number, the wave amplitude, and the wavelength. In addition, after the comparisons of the numerical results with single and two-phase models, the multi-parameter constrained optimization procedure integrating the design of experiments (DOE), response surface methodology (RSM), genetic algorithm (GA) and computational fluid dynamics (CFD) is proposed to design the nanofluid turbulent convection of three-dimensional wavy channel. Three non-dimensional variables, namely wavy amplitude, wavy length, and volume concentration are chosen as design variables. The objective function E which is defined as thermal performance factor has developed a correlation function with three design parameters. The thermal performance factors predicted by regression function for in-line and symmetric channel cases are in good agreement with the numerical results of CFD by the difference within 6.3% and 3.3%, respectively. The combination of parameters is considered as the optimum solution.

    目錄 中文摘要I 英文摘要III 致謝IX 目錄X 表目錄XIII 圖目錄XIV 符號說明XIX 第一章 緒論1 1-1 研究動機與背景1 1-1-1 文獻回顧4 1-2本文探討的主題及方法16 1-3本文架構16 第二章 理論分析17 2-1 空間流場解析17 2-2 奈米流體理論20 2-2-1等效密度、比熱20 2-2-2等效熱傳導係數以及黏滯係數21 2-3 混合模型(mixture model)21 2-3-1混合模型之連續方程式21 2-3-2混合模型之動量方程式.22 2-3-3體積濃度方程式24 2-3-4相對速度24 2-4紊流模型25 2-5邊界條件26 2-6數據計算28 第三章 數值方法32 3-1概述32 3-2統御方程式的座標轉換33 3-3格點位置的配置36 3-4統御方程式的離散37 3-5壓力修正方程式40 3-6差分方程式的解法43 3-7收斂條件43 第四章 最佳化設計45 4-1概述45 4-2反應曲面法46 4-3迴歸分析46 4-4基因演算法48 4-4-1適應度49 4-4-2基因演算法算子50 4-4-3終止條件54 第五章 結果與討論61 5-1波形渠道之數值模擬61 5-1-1數值驗證63 5-1-2網格獨立測試63 5-1-3波型渠道溫度場特性分析64 5-1-4波型渠道流場特性分析68 5-1-5波型渠道熱性能係數分析71 5-2反應曲面法與基因演算法之最佳化72 第六章 結論與建議114 6-1結論114 6-2建議117 參考文獻118 表目錄 表1-1 奈米流體之熱物理性質表3 表1-2 奈米流體實驗相關文獻11 表1-3 奈米流體數值相關文獻13 表1-4 奈米流體黏滯性相關文獻15 表4-1 反應曲面法實驗設計結構表56 表4-2 輪盤選擇56 表4-3 交配算子之例子57 表4-4 突變算子之例子57 表5-1 對齊式實驗設計參數與熱性能係數75 表5-2 對稱式實驗設計參數與熱性能係數79 表5-3 對齊式渠道之目標函數在不同雷諾數下的係數83 表5-4 對稱式渠道之目標函數在不同雷諾數下的係數83 表5-5 反應曲面法在對齊式渠道之最佳化設84 表5-6 反應曲面法在對稱式渠道之最佳化設計85 圖目錄 圖2-1 二維對齊式(in-line)波形渠道的示意圖30 圖2-2 二維對稱式(symmetry)波形渠道的示意圖30 圖2-3 三維對齊式(in-line)波形渠道的示意圖31 圖2-4 三維對稱式(symmetry)波形渠道的示意圖31 圖3-1 座標轉換(a)物理空間 (b)計算空間44 圖3-2 交錯網格示意圖44 圖4-1 最佳化設計流程圖58 圖4-2 反應曲面法參數示意圖59 圖4-3 基因演算法流程圖60 圖5-1 矩形渠道速度驗證圖86 圖5-2 矩形渠道平均對流係數驗證圖86 圖5-3 網格獨立測試圖(a)對齊式(b)對稱式87 圖5-4 網格分布圖(a)對齊式(b)對稱式89 圖5-5 奈米流體於單相與兩相模型下之平均紐賽數關係圖 (a)對齊式(b)對稱式.90 圖5-6 不同體積濃度奈米流體相對於純水之平均紐賽數關係圖 (a)對齊式(b)對稱式91 圖5-7 波形渠道相對於平滑渠道之平均紐賽數關係圖 (a)對齊式(b)對稱式92 圖5-8 奈米流體於不同波長下之平均紐賽數關係圖 (a)對齊式(b)對稱式93 圖5-9 奈米流體於不同振幅下之平均紐賽數關係圖 (a)對齊式(b)對稱式94 圖5-10 對齊式渠道內不同振幅 下之無因次紊流動能分布圖95 圖5-11 對稱式渠道內不同振幅 下之無因次紊流動能分布圖96 圖5-12 奈米流體於不同波形之下局部紐賽數關係圖97 圖5-13 對齊式渠道速度向量與溫度梯度的夾角98 圖5-14 對齊式渠道無因次速度分布圖98 圖5-15 對稱式渠道無因次速度分布圖99 圖5-16 不同體積濃度奈米流體相對於純水之壓降關係圖 (a)對齊式(b)對稱式100 圖5-17 波形渠道相對於平滑渠道之壓降關係圖 (a)對齊式(b)對稱式101 圖5-18 奈米流體於不同波長下之壓降關係圖 (a)對齊式(b)對稱式102 圖5-19 奈米流體於不同振幅下之壓降關係圖 (a)對齊式(b)對稱式103 圖5-20 奈米流體於不同排列渠道之下局部摩擦阻抗關係104 圖5-21 對齊式渠道無因次紊流動能分布圖105 圖5-22 對稱式渠道無因次紊流動能分布圖105 圖5-23 不同體積濃度奈米流體相對於純水之熱性能係數關係 (a)對齊式(b)對稱式106 圖5-24 波形渠道相對於平滑渠道之熱性能係數關係圖 (a)對齊式(b)對稱式107 圖5-25 奈米流體於不同波長下之熱性能係數關係圖 (a)對齊式(b)對稱式108 圖5-26 奈米流體於不同振幅下之熱性能係數關係圖 (a)對齊式(b)對稱式109 圖5-27 對齊式渠道最佳化無因次速度圖 (a)Re=6500(b)Re=9500 110 圖5-28 對齊式渠道最佳化無因次溫度圖 (a)Re=6500(b)Re=9500 111 圖5-29 對稱式渠道最佳化無因次速度圖 (a)Re=6500(b)Re=9500 112 圖5-30 對稱式渠道最佳化無因次溫度圖 (a)Re=6500(b)Re=9500 114

    [1]Maxwell, J. C., Electricity and Magnetism, 1st Ed., Clarendon Press, Oxford, England, 1873.
    [2]Vincenzo, B., “Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes,” Nanoscale Research Letters Vol.6, pp. 252-264, 2011.
    [3]Choi, S.U.S., “Enhancing thermal conductivity of fluids with nanoparticles,” ASME FED Vol.231/MD66, pp. 99-105, 1995.
    [4]Eastman, J.A., Choi, U.S., Li, S., Thompson, L.J., Lee, S., “Enhanced thermal conductivity through the development of nanofluids,” Materials Research Society Symposium-Proceedings, Vol.457, pp. 3-11, 1996.
    [5]Lee, S., Choi, S.U.S., Li, S., Eastman, J.A, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Journal of Heat Transfer, Vol.121, pp. 280-289, 1999.
    [6]Xie, H.Q., Wang, J.C., Xi, T.G., Liu, Y., Ai, F., Wu, Q.R., 2002. “Thermal conductivity enhancement of suspensions containing nanosized alumina particles.” J. Appl. Phys., Vol.91, pp.4568-4572, 2002.
    [7]Xuan, Y., Li, Q., “Investigation on convective heat transfer and flow features of nanofluids,” Journal of Heat Transfer Vol.125, pp.151–155, 2003.
    [8]Wen, D., Ding, Y., “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” International Journal of Heat and Mass Transfer, Vol.47, pp. 51-81, 2004.
    [9]Murshed, S.M.S., Leong, K.C., Yang, C., 2005. “Enhanced thermal conductivity of /water-based nanofluids.” Int. J. Thermal Sci. Vol.44, pp.367-373, 2005.
    [10]Yoo, D.H., Hong, K.S., Yang, H.S., “Study of thermal conductivity of nanofluids for the application of heat transfer fluids,” Thermochimica Acta Vol.455 pp.66–69, 2007.
    [11]Keblinski, P., Phillpot, S.R., Choi, S.U.S., “Eastman, J.A., Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” International Journal of Heat and Mass Transfer, Vol.45, pp.855–863, 2002.
    [12]Vajjha, R.S., Das, D.K., “Experimental determination of thermal conductivity of three nanofluids and development of new correlations.” Int. J. Heat Mass Trans. Vol.52, pp.4675-4682, 2009.
    [13]Duangthongsuk, W.,Wongwises, S. “Measurement of temperature-dependent thermal conductivity and viscosity of /water nanofluids.” Thermal Fluid Sci. Vol.33, pp.706-714, 2009.
    [14]Beck, M.P., Yuan, Y., Warrier, P., Teja, A.S., “The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures,” Journal of Nanoparticle Research, Vol.12, pp.1469–1477, 2010.
    [15]Fotukian, S.M., Esfahany, M.N. “Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube.” Int. Commun. Heat Mass Trans, Vol.37, pp.214-219, 2010.
    [16]Maiga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., “Heat transfer behaviours of nanofluids in a uniformly heated tube,” Superlattices and Microstructures, Vol.35, pp.543–557, 2004.
    [17]Maiga, S.E.B., Palm, S.J., Nguyen, C.T., Roy, G., Galanis, N., “Heat transfer enhancement by using nanofluids in forced convection flows,” International Journal of Heat and Fluid Flow, Vol.26, pp.530–546, 2005.
    [18]Eiamsa-ard, S. , Pethkool, S., Thianpong, C., Pongjet Promvonge, P., “Numerical study on heat transfer of turbulent channel flow over periodic grooves,” International Communications in Heat and Mass Transfer, Vol.35, pp.120-199, 2008.
    [19] Santra, A.K., Sen, S., Chakraborty, N, “Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates,” International Journal of Thermal Sciences, Vol. 48, pp. 391-400, 2009.
    [20]Yang, Y. T., Lai, F. H., “Numerical study of heat transfer enhancement with the use of nanofluids in radial flow cooling system,” International Journal of Heat and Mass Transfer, Vol.53, pp. 5895-5904, 2010.
    [21]Yang, Y. T., Lai, F. H., “Numerical investigation of cooling performance with the use of Al2O3/water nanofluids in a radial flow system,” International Journal of Thermal Sciences, Vol.50, pp. 61-72, 2011.
    [22]Gherasim, I., Roy, G., Nguyen, C.T., Vo-Ngoc, D., “Experimental investigation of nanofluids in confined laminar radial flows,” International Journal of Thermal Sciences, Vol.48, pp.1486–1493, 2009.
    [23]Yang, Y. T., Wang, Y. H, Tseng, P. K., “Numerical optimization of heat transfer enhancement in a wavy channel using nanofluids,” International Communications in Heat and Mass Transfer, Vol.51, pp.9–17, 2014.
    [24]Akbari, M., Galanis, N., Behzadmehr, A., “Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer,” International Journal of Thermal Sciences, Vol. 50, pp.1343-1354, 2011.
    [25]Hadad, K. , Rahimian, A. Nematollahi, M.R., “Numerical study of single and two-phase models of water/Al2O3 nanofluid turbulent forced convection flow in VVER-1000 nuclear reactor,” Annals of Nuclear Energy, Vol. 60, pp. 287-294, 2013.
    [26]Mostafa, K. M. , Ardehali, R. M., “CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink,” International Communications in Heat and Mass Transfer, Vol. 44, pp. 157-164, 2013.
    [27]Brinkman, H.C., “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys, Vol. 20, pp. 571-581, 1952.
    [28]Einstein, A. Investigation on the theory of Brownian movement, Dover, New York, 1956.
    [29]Graham, A.L., On the viscosity of suspensions of solid spheres, Applied Scientific Research Vol.37 pp.275–286, 1981.
    [30]Nguyen, C.T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., Angue Mintsa, H., “Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon,” International Journal of Heat and Fluid Flow Vol.28, pp.1492–1506, 2007.
    [31]K. Jeevan, I.A. Azid, K.N. Seetharamu., “Optimization of double layer counter flow (DLCF) micro-channel heat sink used for cooling chips directly”, Electronics Packaging Technology Conference, pp. 553-558, 2004.
    [32]Jeng, T. M., “A Porous Model for the Square Pin-Fin Heat Sink Situated in a Rectangular Channel with Laminar Side-Bypass Flow”, Int. J. Heat and Mass Transfer, Vol 51, pp. 2214-2226, 2008.
    [33]Mohsin S., Maqbool A., Khan W. A., “Optimization of Cylindrical Pin-Fin Heat Sinks Using Genetic Algorithms”, IEEE Trans. Compon. Packag. Technol., Vol 32, pp. 44-52, 2009.
    [34]Seyf, H. R., Layeghi M., “Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert”, J. Heat transfer, Vol 132, paper no. 071401, 2010.
    [35]Nakayama, A., Yang J., Zeng M., Wang Q. W., “Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels”, J. Heat transfer, Vol 132, paper no.051702, 2010.
    [36]Koo, G. W., Lee, S. M., Kim, K. Y., “Shape optimization of inlet part of a printed circuit heat exchanger using surrogate modeling, ” Applied Thermal Engineering, Available online 14, 2013.
    [37]Moon, M. A., Kim, K. Y., “Analysis and optimization of fan-shaped pin–fin in a rectangular cooling channel, ” International Journal of Heat and Mass Transfer, Vol 72, pp. 148-162, 2014.
    [38]Yang, Y. T., Wang, Y. H, Chen, K. W., “Numerical optimization of gas diffusion layer with a wavy channel,” International Communications in Heat and Mass Transfer, Vol.52, pp.15-25, 2014.
    [39]Mi-Ae Moon, Kwang-Yong Kim., “Analysis and optimization of fan-shaped pin–fin in a rectangular cooling channel,” International Journal of Heat and Mass Transfer, Vol.72, pp.148-162, 2014.
    [40]Lin Lina, Yang-Yang Chena, Xin-Xin Zhanga, Xiao-Dong Wang., “Optimization of geometry and flow rate distribution for double-layer
    microchannel heat sink”, International Journal of Thermal Sciences., Vol 78, pp. 158-168, 2014.
    [41]Ishii, M., Mishima, K., “Two-fluid dynamic theory of two-phase flow,” Paris: Eyrolles, 1975.
    [42]Manninen, M., Taivassalo, V., Kallio, S., “On the mixture model for multiphase flow,” VTT Publications 288. Technical Research Center of Finland., 1996.
    [43]Schiller, L., Naumann, A., “A drag coefficient correlation,” Z.Ver. Deutsch. Ing. Vol. 77, pp. 318-320, 1935.
    [44]Miller, A., Gidaspow, D., “Dense,vertical gas- solid flow in a pipe,” AIChE J.,Vol.38, pp. 1801-1815, 1992.
    [45]Patankar, S.V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
    [46]Bagley J.D., “The Behavior of Adaptive System which Employ Genetic and Correlation Algorithm,” Dissertation Abstracts International, Vol. 28, 1967.
    [47]De Jong, K.A., “Analysis of the Behavior of a Class of Genetic Adaptive Systems,” PhD Dissertation, University of Michigan, No. 76~9381, 1975.
    [48]Goldberg, D.E., “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley, 1989.
    [49]Davis, L.D., “Handbook of Genetic Algorithms,” Van Nostrand Reinhold, 1991
    [50]Koza, J.R., “Genetic Programming, on the Programming of Computers by Means of Natural Selection, MIT Press, 1992

    下載圖示 校內:2016-07-18公開
    校外:2016-07-18公開
    QR CODE