簡易檢索 / 詳目顯示

研究生: 吳春梅
Wu, Chun-Mei
論文名稱: 探討人類凝血酶調節素抗凝活性之外的功能
Study of the Potential Biological Functions of Human Thrombomodulin Independent of Its Anticoagulant Activity
指導教授: 吳華林
Wu, Hua-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 98
中文關鍵詞: 蛋白酶活化接受器細胞外反應激素凝血酶調節素凝血酶
外文關鍵詞: extracellular responsive kinase, protease activated receptor, thrombomodulin, thrombin
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類凝血酶調節素(Thrombomodulin;簡稱TM)是血管內皮細胞表面的一種醣蛋白,分子量約為75kDa,由557個胺基酸所組成。從N端到C端可依序分為五個不同的功能區間(Functional domain): lectin-like domain、epidermal growth factor(EGF)-like domain、serine/threonine-rich domain、transmembrane domain及C端的cytoplasmic domain。TM主要的生物活性是參與抗凝固反應,當TM與凝血酶(thrombin)以1:1等比例結合成複合體,活化protein C,而活化型的protein C會水解血液中的活化型凝固因子五及八,進而抑制凝血酶生成及一連串的凝固反應,達到抗凝效果。凝血酶是一種絲胺酸蛋白酶(serine protease),主要生理作用是促進血小板活化及血液凝固作用,然而,此蛋白酶也具有刺激發炎反應、腫瘤生成及傷口癒合等重要功能。陸續有文獻指出, TM會調節蛋白酶活化接受器(protease activated receptor; PAR)的MAPK訊息反應,但是作用的機轉尚未明瞭。為了釐清TM在調控凝血酶作用的分子機轉,本實驗室,利用內生性表現蛋白酶活化接受器的細胞株-人類胚胎腎臟細胞(HEK293),轉殖入TM基因,我們初步發現表現TM的細胞株會延長凝血酶所誘導ERK的活化長達四個小時之久,截去TM 的lectin-like domain或TM cytoplasmic domain都不會影響TM在延長ERK活化的能力。加入凝血酶接受器擷抗物或抗TM抗體,則會抑制TM調節凝血酶誘導p-ERK活化之結果。阻斷PK C路徑可以完全抑制,在凝血酶活化之ERK訊息傳遞路徑上的延長活化能力。綜合以上結果,我們認為凝血酶與TM形成的複合體,會經由活化PKC路徑來延長ERK之活化,而TM的lectin-like domain及cytoplasmic domain並沒有參與傳導此種調節訊號,至於凝血酶-TM形成複合體活化PKC路徑的方式,則有待進一步實驗來釐清。

    Thrombomodulin ( TM ), a 75 kDa glycoprotein of 557 amino acid residues, is expressed on endothelial cells of vasculatures. It consists of five distinct domains including N-terminal lectin-like domain, epidermal growth factor (EGF)-like domain, serine / threonine-rich domain, transmembrane domain, and cytoplasmic tail. By forming a 1:1 complex with thrombin, TM alters the procoagulant activity of thrombin and acts as a cofactor in thrombin-catalyzed activation of protein C. Activated protein C can proteolytically inactive coagulation factor Va and VIIIa which in turn shutdown the generation of thrombin. Thrombin, a serine protease, is primarily known for its regulation of hemostasis and thrombosis. However, this enzyme also plays an important role in wound healing and pathological situations, such as inflammation and tumorigenesis. Thrombin can either bind to thrombin receptor or TM, however, the interaction of these factors is not clear.
    Previously reports demonstrated that TM retained the effects induced by thrombin-thrombin receptor interaction, however, the mechanism is ambiguous. In the present studies, we found that TM-overexpressed human embryonic kidney cells could prolong the thrombin-induced extracellular signal regulated kinase (ERK) phosphorylation. The sustained ERK phosphorylation was inhibited by adding PAR1 antagonist or anti-TM antibody. Neither the lectin-like domain truncated or the cytoplasmic domain-deleted mutants of TM could alter the modulating activity of TM. Furthermore, blocking the PKC pathway could completely abolish the prolonged pERK in TM-expressed HEK293 cells. Taken together, we concluded that the thrombin-TM complex could modulate the PAR-1 mediated ERK signaling through a PKC-dependent manner, although the detailed mechanism remained to be clarified.

    目錄 頁次 中文摘要------------------------------------------------------------------------------------------1 英文摘要-------------------------------------------------------------------------------------------2 誌謝------------------------------------------------------------------------------------------------4 目錄------------------------------------------------------------------------------------------------5 圖、表、附錄目錄---------------------------------------------------------------------------------7 縮寫檢索表---------------------------------------------------------------------------------------9 儀器-----------------------------------------------------------------------------------------------11 藥品----------------------------------------------------------------------------------------------14 緒論----------------------------------------------------------------------------------------------19 一﹑人類凝血酶調節素------------------------------------------------------------------19 二﹑人類凝血酶調節素的結構和功能------------------------------------------------20 三、凝血酶---------------------------------------------------------------------------------22 四、凝血酶與凝血酶接受器--------------------------------------------------23 五、Mitogen Activated Protein Kinase ------------------------------------------------24 六、凝血酶與凝血酶調節素------------------------------------------------26 七、研究目的------------------------------------------------------------------------------27 實驗方法---------------------------------------------------------------------------------------- 28 一、凝血酶調節素TM1.7(△cyt)及TM1.0(△cyt)的構築 小量質體DNA抽取-------------------------------------------------------------- 28 瓊脂膠電泳分析-------------------------------------------------------------------28 以電泳法回收DNA----------------------------------------------------------------29 限制酶切割-------------------------------------------------------------------------31 接合反應----------------------------------------------------------------------------31 形質轉移(transformation)---------------------------------------------------------33 核酸定序分析(DNA sequencing)------------------------------------------------34 長期菌種保存(long-term storage of bacteria)----------------------------------34 二、細胞培養方法 人類胚胎腎臟細胞之繼代培養-------------------------------------------------34 凍細胞的方法----------------------------------------------------------------------35 解凍細胞的方法------------------------------------------------------------------- 36 細胞的計數-------------------------------------------------------------------------36 三、DNA轉染系統 穩定性DNA轉染系統-------------------------------------------------------------36 細胞表現之確認 a)活化protein C之功能分析-----------------------------------------------------38 b)以西方點墨法確認蛋白表現--------------------------------------------------39 蛋白質電泳-------------------------------------------------------------------------- 40 西方點墨法--------------------------------------------------------------------------43 四、MAPK活性分析 蛋白質收集---------------------------------------------------------------------------44 免疫沉澱------------------------------------------------------------------------------45 Kinase assay--------------------------------------------------------------------------45 結果------------------------------------------------------------------------------------------47 討論------------------------------------------------------------------------------------------53 參考文獻------------------------------------------------------------------------------------58 結果圖表------------------------------------------------------------------------------------66 表---------------------------------------------------------------------------------------------84 附錄------------------------------------------------------------------------------------------85 自述------------------------------------------------------------------------------------------98

    Amiral J, Adam M, Mimilla F, Larrivaz I, Chambrette B, Boffa MC. Design and validation of a new immunoassay for soluble forms of thrombomodulin and studies on plasma. Hybridoma 13:205 (1994)
    Anderson NG, Maller JL, Tonks NK, Sturgill TW. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 343:651 (1990)
    Bajzar L. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb Vasc Biol. 20:2511 (2000)
    Boffa MC, Burke B, Haudenschild CC. Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J Histochem Cytochem. 35:1267 (1987)
    Broze GJ Jr, Higuchi DA. Coagulation-dependent inhibition of fibrinolysis:role of carboxypeptidase and the premature lysis of clots from hemophilic plasma. Blood 88:3815 (1996)
    Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90:859 (1997)
    Cobb MH, Goldsmith EJ. How MAP kinases are regulated. J Biol Chem. 270:14843 (1995)
    Conway EM, Boffa MC, Nowakowski B, Steiner-Mosonyi M. An ultrastructural study of thombomodulin endocytosis: internalization occurs via clathrin-coated and non-coated pits. J Cell Physiol. 151:604 (1992)
    Conway E, Nowakowski B, Steiner-Mosonyi M. Thrombomodulin lacking the cytoplasmic domain efficiently internalizes thrombin via nonclathrin-coated, pit-mediated endocytosis. J Cell Physiol. 158:285 (1994)
    Conway EM, Pollefeyt S, Collen D, Steiner-Mosonyi M. The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood 89:652 (1997)
    Coughlin SR. Protease-activated receptors start a family. Proc Natl Acad Sci USA. 91:9200 (1994)
    Coughlin SR. How the protease thrombin talks to cells. Proc Natl Acad Sci USA. 96:11023 (1999)
    Coughlin SR. Thrombin signaling and protease-activated receptors. Nature 407:258 (2000)
    Davis RJ. MAPKs: new JNK expands the group. Trends Biochem Sci. 19:470 (1994).
    DeBault LE, Esmon NL, Olson JR, and Esmon CT. Distribution of the thrombomodulin antigen in the rabbit vasculature. Lab Invest. 54:172 (1986)
    de Munk GA, Parkinson JF, Groeneveld E, Bang NU, Rijken DC. Role of the glycosaminoglycan component of thrombomodulin in its acceleration of the inactivation of single-chain urokinase-type plasminogen activator by thrombin. Biochem J. 290:655 (1993)
    Derijard B, Hibi M, Wu IH. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025 (1994)
    Esmon CT, Owen WG. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc Natl Acad Sci USA. 78:2249 (1981)
    Esmon CT, Esmon NL, Harris KW. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol Chem. 257:7944 (1982)
    Goebeler M, Gillitzer R, Kilian K et al. Multiple signaling pathways regulate NF-kB-dependent transcription of the monocyte chemoattractant protein-1 gene in primay endothelial cells. Blood 97:46 (2001)
    Grand RJ, Turnell AS, Grabham PW. Cellular consequences of thrombin-receptor activation. Biochem J. 313:353 (1996)
    Grewal SS, York RD, Stork PJ. Extracellular-signal-regulated kinase signalling in neurons. Curr Opin Neurobiol. 9:544 (1999)
    Grinnell BW, Berg DT. Surface thrombomodulin modulates thrombin receptor responses on vascular smooth muscle cells. Am J Physiol. 270:H603 (1996)
    Hammes SR, Coughlin SR. Protease-activated receptor-1 can mediate responses to SFLLRN in thrombin-desensitized cells: evidence for a novel mechanism for preventing or terminating signaling by PAR1's tethered ligand. Biochemistry 38:2486 (1999)
    Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808 (1994)
    Healy AM, Rayburn HB, Rosenberg RD, and Weiler-Guettler H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci USA. 92:850 (1995)
    Honda G, Masaki C,Zushi M, Tsuruta K, Sata M. The roles played by the D2 and D3 domains of recombinant human thrombomodulin in its function. J Biochem. 118:1030 (1995)
    Hoshi H, Kan M, Mioh H, Chen JK, McKeehan WL.Phorbol ester reduces number of heparin-binding growth-factor receptors in human adult endothelial cells. FASEB J. 2:2797 (1988)
    Imada M, Imada S, Iwasaki H, Kume A, Yamaguchi H, Moore EE. Fetomodulin: marker surface protein of fetal development which is modulatable by cyclic AMP. Dev Biol. 122:483 (1987)
    Imada S, Yamaguchi H, Nagumo M, Katayanagi S, Iwasaki H, Imada M. Identification of fetomodulin, a surface marker protein of fetal development, as thrombomodulin by gene cloning and functional assays.
    Dev Biol. 140:113 (1990)
    Kennel SJ, Lankford T, Hughes B, and Hotchkiss JA Quantitation of a murine lung endothelial cell protein, P112, with a double monoclonal antibody assay. Lab Invest. 59:692 (1988)
    Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E, Cobb MH. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93:605 (1998)
    Kokame K, Zheng X, Sadler JE. Activation of thrombin-activable fibrinolysis inhibitor requires epidermal growth factor-like domain 3 of thrombomodulin and is inhibited competitively by protein C. J Biol Chem. 273:12135 (1998)
    Koyama T, Parkinson JF, Aoki N, Bang NU, Muller-Berghaus G, Preissner KT. Relationship between post-translational glycosylation and anticoagulant function of secretable recombinant mutants of human thrombomodulin. British J Haematol. 78:515 (1991)
    Kurosawa S, Galvin JB, Esmon NL, Esmon CT. Proteolytic formation and properties of functional domains of thrombomodulin. J Biol Chem. 262:2206 (1987)
    Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem. 271:24313 (1996)
    Lafay M, Laguna R, Le Bonniec BF, Lasne D, Aiach M, Rendu F. Thrombomodulin modulates the mitogenic response to thrombin of human umbilical vein endothelial cells. Thromb Haemost. 79:848 (1998)
    Lager DJ, Callaghan EJ, Worth SF, Raife TJ,and Lentz SR. Cellular localization of thrombomodulin in human epithelium and squamous malignancies. Am J Pathol. 146:933 (1995)
    Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, and Plevin R. Proteinase-activated receptors. Pharmacol Rev. 53:245 (2001)
    Maruyama I, Bell CE, and Majerus PW. Thrombomodulin is found on endothelium of arteries, veins, capillaries and lymphatics, and on syncytiotrophoblast of human placenta. J Cell Biol. 101:363 (1985)
    Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179 (1995)
    Maruno M, Yoshimine TI, kuroda R, Ishii H, and Hayakawa T. Expression of thrombomodulinnin astrocytomas of various malignancy and in gliotic and normal brains. J Neurooncol. 19:155 (1994)
    Maruyama I, Majerus PW. The turnover of thrombin-thrombomodulin complex in cultured human umbilical vein endothelial cells and A549 lung cancer cells. Endocytosis and degradation of thrombin. J Biol Chem. 260:15432 (1985)
    McCachren SS, Diggs J, Weinberg JB, and Dittman WA. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood 78:3128 (1991)
    McEver R. Leukocyte interactions mediated by selectins. Thromb Haemost. 66:80 (1991)
    Molinari A, Giorgetti C, Lansen J, Vaghi F, Orsini G, Faioni EM, Mannucci PM. Thrombomodulin is a cofactor for thrombin degradation of recombinant single-chain urokinase plasminogen activator in vitro and in a perfused rabbit heart model. Thromb Haemost. 69:226 (1992)
    Nesheim M, Wang W, Boffa M, Nagashima M, Morser J, Bajzar L. Thrombin, thrombomodulin and TAFI in the molecular link between coagulation and fibrinolysis. Thromb Haemost. 78:386 (1997)
    Olivot JM, Estebanell E, Lafay M, Brohard B, Aiach M, Rendu F. Thrombomodulin prolongs thrombin induced extracellular signal-regulated kinase phosphorylation and nuclear retention in endothelial cells. Circ Res. 88:681 (2001)
    Parkinson JF, Garcia JG, Bang NU. Decreased thrombin affinity of cell-surface thrombomodulin following treatment of cultured endothelial cells with beta-D-xyloside. Biochem Biophys Res Commun. 169:177 (1990)
    Patty L. Detecting distant homologies of mosaic proteins. Analysis of the sequences of thrombomodulin, thrombospondin complement components C9, C8 alpha and C8 beta, vitronectin and plasma cell membrane glycoprotein PC-1. J Mol Biol. 202:689 (1988)
    Petersen T. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS Lett. 231:51(1988)
    Polgar J, Lerant I, Muszbek L, Machovich R. Thrombomodulin inhibits the activation of factor XIII by thrombin. Thromb Res. 43:585 (1986)
    Raife TJ, Lager DJ, Madison KC, Piette WW, Howard EJ, Sturm MT, Chen Y and Lentz SR. Thrombomodulin expression by human keratinocytes. J Clin Invest. 93:1846 (1994)
    Ruf W. PAR1 signaling: more good than harm?. Nature Medicine. 9:258 (2003)
    Schenk-braat EA, Morser J, Rijen DC. Identification of the epidermal growth factor-like domains of thrombomodulin essential for the acceleration of thrombin-mediated inactivation of single-chain urokinase-type plasminogen activator. Eur J Biochem. 268:5562 (2001)
    Shirai T, Shiojiri S, Ito H, Yamamoto S, Kusumoto H, Deyashiki Y, Maruyama I, Suzuki K. Gene structure of human thrombomodulin, a cofactor for thrombin-catalyzed activation of protein C. J Biochem. 103:281 (1988)
    Suehiro T, Shimada M, Matsumata T, Taketomi A, Yamamoto K, and Sugimachi K. Thrombomodulin inhibits intrahepatic spread in human hepato-cellular carcinoma. Hepatology 21:1285 (1995)
    Tamura DY, Moore EE, Johnson JL, Zallen G, Aiboshi J,Siliman CC. p38 mitogen-activated protein kinase inhibition attenuated intercellular adhesion molecule-1up-regulation on human pulmonary microvascular endothelial cells. Surgency 124:403 (1998)
    Teasdale M, Bird C, Bird P. Internalization of the anticoagulant thrombomodulin is constitutive and does not require a signal in the cytoplasmic domain. Immunol Cell Biol. 72:480 (1994)
    Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C, Natsugoe S, et al. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 55:4196 (1995)
    Tibbles LA, Woodgett JR. The stress-activated protein kinase pathways. Cell Mol Life Sci. 55:1230 (1999)
    Van Obberghen-Schilling E, Vouret-Craviari V, Chen YH, Grall D, Chambard JC, Pouyssegur J. Thrombin and its receptor in growth control. Ann N Y Acad Sci. 766:431 (1995)
    Vouret-Craviari V, Van Obberghen-Schilling E, Scimeca JC, Van Obberghen E, Pouyssegur J. Differential activation of p44 MAPK(ERK-1) by-thrombin and thrombin-receptor peptide agonist. Biochem J. 289:209 (1993)
    Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057 (1991)
    Wang H, Stricker R, Reiser G. Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am J Physiol Cell Physiol. 283:C1351 (2002)
    Wang XZ, Ron D. Stress-induced phosphorylation and activation of the transcription factor (GADD153) by p38 MAP kinase. Science 272:1347 (1996)
    Weiler-Guettler H, Aird WC, Rayburn H, Husain M, and Rosenberg RD.
    Developmentally regulated gene expression of thrombomodulin in postimplantation mouse embryos. Development 122:2271 (1996)
    Weiler H, Lindner V, Kerlin B, Isermann BH, Hendrickson SB, Cooley BC, Meh DA, Mosesson MW, Shworak NW, Post MJ, Conway EM, Ulfman LH, von Andrian UH, Weitz JI.Characterization of a mouse model for thrombomodulin deficiency. Arterioscler Thromb Vasc Biol. 21:1531 (2001)
    Wen DZ, Dittman WA, Ye RD, Deaven LL, Majerus PW, Sadler JE. Human thrombomodulin:complete cDNA sequence and chromosome localization of the gene. Biochemistry 26:4350 (1987)
    Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med. 74:589 (1996)
    Wilhelm S, Wilhelm O, Schmitt M, Graeff H. Inactivation of receptor bound pro-urokinase-type plasminogen activator(pro-UPA) by thrombin and thrombin/thrombomodulin complex. Biol Chem Hoppe Seyler. 375:603 (1994)
    Zushi M, Gomi K, Yamamoto S, Maruyama I, Hayashi T, Suzuki K. The last three consecutive epidermal growth factor-like structures of human thrombomodulin comprise the minimum functional domain for protein C-activating cofactor activity and anticoagulant activity. J Biol Chem. 264:10351 (1989)
    Zhang Y, Weiler-Guettler H, Chen J, Wilhelm O, Deng Y, Qiu F, Nakagawa K, Klevesath M, Wilhelm S, Bohrer H, Nakagawa M, Graeff H, Martin E, Stern D, Rosenberg R, Ziegler R, Nawroth P. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest. 101:1301 (1998)

    無法下載圖示 校內:2097-08-18公開
    校外:2097-08-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE