簡易檢索 / 詳目顯示

研究生: 黃鴻鈞
Huang, Hung-Chun
論文名稱: 彩色影像的一維快速區段編碼法
A Fast 1-D Segment Coding Method for Color Images
指導教授: 戴顯權
Tai, Shen-Chuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 53
中文關鍵詞: 適應性取樣編碼位元分配技術近乎無失真
外文關鍵詞: near lossless, adaptive sampling, bit allocation
相關次數: 點閱:61下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今壓縮技術在工業應用上變得越來越重要。為了有效的降低硬體成本,一個理想的壓縮方法是把影像以一列接著一列的方式處理,並將每列的資訊分段,再把每段獨立壓縮。此外,在編解碼的過程中將不使用額外的資訊,且在最終可以以固定的壓縮比輸出位元串。最近相關研究中有一個效果較好的演算法,但是由於其高複雜度的緣故,在硬體上實作相當的困難。在本篇論文中,提出一個藉由人眼視覺系統的一些原則,採用適應性取樣編碼與位元分配技術的快速演算法。由實驗結果顯示,所提出的方法除了在視覺上近乎無失真外,也大大的降低了計算時間。

    Nowadays, compression techniques have become more and more important in the industrial applications. In order to efficiently reduce the cost in hardware, an ideal compression method is to process the image line by line, separate each line in segments, and compress each segment independently. Besides, there is no extra information used in the encoding and decoding, and eventually the bit stream is outputted with a fixed compression ratio. Recently, there is an algorithm which performs well in related researches. However, its high complexity makes it difficult to be implemented in hardware. In this study, a fast algorithm is proposed, which is according to some rules of human visual system (HVS) and applies adaptive sampling coding and the bit allocation technique. As shown in experimental results, the proposed algorithm not only keeps near lossless in visual quality but also decreases much computing time.

    Content Content i Figure iii Table v Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 Related Works 3 2.2 Adaptive Sampling Coding 4 2.2.1 Introduction 4 2.2.2 Apply with Block Truncation Coding 5 2.2.3 AREA 6 2.3 Human Visual System 8 Chapter 3 Proposed Method 11 3.1 Flow Diagram 11 3.2 Sampling 12 3.3 Ranking 15 3.4 Bit Allocation 17 3.5 Rate Control 18 3.6 Quality Control 20 Chapter 4 Simulation Results 23 4.1 Visual Quality 25 4.2 Computing Time 33 4.3 PSNR 39 Chapter 5 Discussion 44 5.1 Advantages on Computing Time 44 5.2 Disadvantages on PSNR 45 5.3 Contribution by Bit Allocation 47 5.4 Disadvantages on 64 Pixels per Segment 49 Chapter 6 Conclusion and Future Work 50 6.1 Conclusion 50 6.2 Future work 50 REFERENCES 52

    [1] Krivoulets Alexandre, IT University of Copenhagen, “A method for progressive near-lossless image compression”, IEEE, 2003.

    [2] Rashid Ansari, Nasir Memon, Ersan Ceran, “Near-lossless image compression techniques,” Journal of Electronic Image, vol. 7(3), 1998.

    [3] Chen Keshi, Tenkasi V. Ramabadran, “Near-lossless compression of medical images through entropy-coded DPCM,”IEEE Transaction on Medical Imaging, vol. 13 no. 3, 1994.

    [4] Hu Hao, “A study of CALIC”, UMBC ENEE master scholar paper, 2004.

    [5] E.H. Adelson, C. H. Anderson, J. R. Bergen, P. J Burt, J. M. Ogden, “Pyramid methods in image proceesing”, RCA Engineer 29-6, 1984.

    [6] Solomon W. Golomb, “Run-length encodings,” IEEE Transactions on Information Theory 12(3):399, 1966.

    [7] M. Ishijima, S. B. Shin, G. H. Hostetter, J. Sklansky, “Scan-along polygon approximation for data compression of electrocardiograms”, IEEE Transactions on Biomedical Engineering vol.bme-30 no.11, 1983.

    [8] 戴顯權, “一維數位波形之適應性取樣法”, 中華民國專利發明第083501號.

    [9] 戴顯權, “資料壓縮”, 旗標, 2007.

    [10] Marek Domariski, Krzysztof Rakowski, “A Simple Technique for Near-Lossless Coding of Color Images”, IEEE International Symposium on Circuits and Systems, 2000.

    [11] E. Nasr-Esfahani1, S. Samavi1, N. Karimi1, S. Shirani , “Near Lossless Image Compression by Local Packing of Histogram”, IEEE, 2008.

    [12] S. C. Tai, C. W. Chang, C. F. Chen, “Designing Better Adaptive Sampling Algorithms for ECG Holter Systems”, IEEE Transactions on Biomedical Engineering, 1997.

    [13] H.R.Wu, K.R.Rao, “Digital Video Image Quality and Perceptual Coding”, CRC Taylor & Francis Group, 2006

    [14] Si-Yao Lin, Cheng Kung University, “A 1-D Segment Coder for Near-Lossless Image Compression”, 2008

    下載圖示 校內:2010-07-09公開
    校外:2011-07-09公開
    QR CODE