| 研究生: |
花博湋 Hua, Bo-Wei |
|---|---|
| 論文名稱: |
奈米共振腔超穎表面結構製作及其光學特性量測 Fabrication of Plasmonic Metasurfaces and Measurement of Their Optical Properties |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 奈米壓印 、超穎表面 、偏振轉換 、光束偏折 、奈米共振腔 |
| 外文關鍵詞: | Nanoimprinting, Metasurface, Polarization conversion, Beam deflection, Nanoresonator |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用奈米壓印製程技術製作金屬奈米結構,並應用於具有電漿共振效應的超穎表面(Metasurface)。研究主題為三種不同功能的超穎表面,分別為:單元結構(Unit cell)或半波片(Halfwave plate)、梯度板(Gradient Metasurface)、以及超穎透鏡(Metalens),透過不同製程來提升其效率以及其光學性質,並探討後續大量製作之可行性。上述三種元件已能分別能顯示出偏振轉換、光束偏折、以及聚焦的光學特性,且其效率已有相當明顯的改進;例如,半波片的量測效率已經可以達到70 %左右。本研究主要針對具有共振腔效應的超穎表面,在2吋玻璃基板上製作出三層金屬結構,並且包覆三層高度為200 nm玻璃材質的介電層。三層金屬結構分別為第一、三層為奈米金屬光柵的偏振片,且其方向相差90度,模擬的最佳線寬為100 nm、週期為200 nm,且金屬高度為40 nm。第二層金屬結構則是針對上述三種不同元件而有不同之設計,所採用之金屬層的高度有40 nm以及60 nm 二種。本實驗透過不同製程改變中間層金屬高度(40 nm、60 nm)來量測其最佳效率,並與模擬結果相互驗證。此外,本研究也利用金屬側壁蝕刻法突破在壓印模具高度受限的情況下,製作出傳統舉離製程無法達到的金屬高度。
This thesis applies nanoimprint lithography and technology to fabricate metallic nanostructures which are applied to plasmonic metasurfaces. Three types of metasurfaces with different optical functions are fabricated and investigated, which are unit cell (or halfwave plate) structure, gradient metasurface, and metalens. various fabrication processes are tested and studied to improve their efficiency and optical properties, as well as to explore the feasibility of mass production in the future. Significant improvement has been achieved, for example, the efficiency of halfwave plate is reaching 70 % of its theoretical value. The metasurfaces which utilize the resonant cavity effect are basically a three-layer metallic nanostructures fabricated on a 2-inch glass substrate and sandwiched with three 200 nm thick dielectric layers. In the three-layer metallic nanostructure, the first and third layers are linear grating polarizers which are mutually perpendicular to each other. The simulated optimal line width is 100 nm, the period is 200 nm, and the metal height is 40 nm. The second layer metallic nanostructures have different designs for the above-mentioned optical functions, with two different metal layer thicknesses of 40 nm and 60 nm. Experiments have been conducted by changing the metal layer thickness using different fabrication processes, and cross examining their measured efficiency with simulation results. Additionally, this thesis also developed a metal sidewall etching method which can significantly increase the structural height of the fabricated metallic nanostructures.
[1] J. Hu, “A review on metasurface:from principle to smart metadevice,” Frontiers in Physics., vol. 8, pp.586087, 2021.
[2] N. Yu, “Flat optics with designer metasurface,” Nature materials., vol. 13, no. 2, pp.139-150, 2014.
[3] P. J. B and D. R. Smith, “Reversing light with negative refraction,” Physics today., vol. 57, pp.37-43, 2004.
[4] S. Wang et al., “Broadband achromatic optical metasurface devices,” Nat. Commum., vol. 8, no. 1, pp.187, 2017.
[5] 黃珮瑜,“化學鍍法製備銅奈米島狀薄膜及其螢光增強特性分析,”國立臺灣師範大學化學系碩士論文, 2020.
[6] L. Schulz, “The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k,” JOSA., vol. 13, vol. 44, no. 5, pp. 357-362, 1954.
[7] A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science, vol. 339, no. 6125, p. 1232009, 2013
[8] S. Sun et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano. lett., vol. 12, no. 12, pp. 6223-6229, 2012.
[9] F. Ding, Y. Chen and S. I. Bozhevolnyi, “Metasurface-based polarimeters,” Appl. Sci., vol. 8, no. 4, p.594, 2018.
[10] A. J. Ollanik, J. A. Smith, M. J. Belue, and M. D. Escarra,“High-efficiency all-dielectric huygens metasurfaces from the ultraviolet to the infrared,”Acs Photonics., vol. 5, no. 4, pp.1351-1358, 2018.
[11] H. H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,”Small Methods., vol. 1, no. 4, p.1600064, 2017.
[12] X. C. Zhang, and J. Xu, “Introduction to THz wave photonics,” New York, Springer, 2010.
[13] K. Kawase, Y. Ogawa, W. Yuuki, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Optics express., vol. 11, no. 20, pp. 2549-2554, 2003.
[14] Q. Cheng et al., “Broadband achromatic metalens in terahertz regime,” Sci. Bull., vol. 64, no. 20, pp.1525-1531, 2019.
[15] H. Dan et al., “Ultrathin terahertz planar elements,” Adv. Opt. Mater., vol. 1, no. 2, pp. 186-191, 2013.
[16] J. He, J. Ye, X. Wang, Q. Kan, Y. Zhang, “A broadband terahertz ultrathin multi-focus lens”Sci. Rep., vol. 6, no. 1, pp. 1-9, 2016.
[17] D. C. Wang et al., “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express., vol. 23, no. 9, pp. 11114-11122, 2015.
[18] D. C. Wang, et al., “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep., vol. 5, no. 1, pp. 1-9, 2015.
[19] F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater., vol. 6, no. 9, p. 1701204, 2018.
[20] P. R. Fabian and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proceedings of the IEEE., vol. 96, no. 2, pp. 248-270, 2008.
[21] S. Y. Chou, P. R. Krausse, and P. J. Renstrom, “Imprint of sub‐25 nm vias and trenches in polymers,” Appl. Phys. Lett., vol. 6, no. 21, pp. 3114-3116, 1995.
[22] S. Y. Chou, “Nanoimprint lithography,” J. Vac. Sci. Technol. B, vol. 14, no. 6, pp. 4129-4133, 1996.
[23] M. Colburn et al., “Step and flash imprint lithography: a new approach to high-resolution patterning,” International Society for Optics and Photonics., vol. 3676, pp. 379-389, 1999.
[24] Y. Xia et al., “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir, vol. 12, no. 16, pp. 4033-4038, 1996.
[25] Y. C. Lee and C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng., vol. 18, no. 7, p. 075013, 2008.
[26] 杜珮綺,“奈米壓印暨黑光阻嵌入式軟性光罩之微奈米製程與應用,”國立成功大學機械工程學系碩士論文, 2019.
[27] 朱致緯,“奈米壓印微影製程應用於高頻表面聲波元件之製作與實驗量測,”國立成功大學機械工程學系碩士論文, 2019.
[28] L. J. Liu et al.,“A programmable nanoreplica molding for the fabrication of nanophotonic devices,”Sci. Rep., vol. 6, no. 1, p.22445, 2016.
[29] 林志融,“雙阻劑奈米壓印製程應用於製作高深寬比奈米結構,”國立成功大學機械工程學系碩士論文, 2022.
[30] 梁方虹,“微米與奈米等級光學結構的製程與特性量測,”國立成功大學機械工程學系碩士論文, 2022.
[31] 翁淑文, “奈米共振腔輔助高效能電漿子超穎介面,”國立成功大學光電科學與工程學系碩士論文, 2022.
[32] F. Ding et al., “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS nano., vol. 9, no. 4, pp. 4111-4119, 2015.
[33] C. Bencher, “22nm half-pitch patterning by CVD spacer self alignment double patterning,” Optical Microlithography XXI, vol. 6924, pp.1440-1446, 2008.
校內:2028-08-20公開