| 研究生: |
陳君瑞 Chen, Chun-Ray |
|---|---|
| 論文名稱: |
高屏溪斜張橋行為之研究 Behavior of Kao-Ping-Hsi Cable-Stayed Bridge |
| 指導教授: |
方一匡
Fang, I-Kuang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 混凝土 、斜張橋 、載重試驗 、斜張鋼纜 |
| 外文關鍵詞: | loadinf test, stayed-cable, concrete, cable-stayed bridge |
| 相關次數: | 點閱:146 下載:27 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
由於施工技術的提昇,造型優美的現代斜張橋近幾十年來成為世界各國逐漸採用之橋樑型式。隨著跨度的增加,斜張橋的基本特性越來越複雜,對於這類橋樑的安全評估也日益重要。本文利用現場及試驗室試驗、模式分析與設計規範比較之方法,研究台灣地區第二高速公路南部路段高屏溪斜張橋之行為,並介紹該橋之監測計畫。
有關試驗的內容包括:(1)利用施工階段斜張鋼纜之施拉預力時建立斜張鋼纜預力之監測流程及確認斜張鋼纜之有效弦長,(2)載重試驗階段之預力主梁及鋼梁變形、預力主梁之應變及斜張鋼纜之預力變化,(3)橋塔底部混凝土之乾縮及潛變資料。模式分析的內容包括:(1)三維電腦分析模式,(2)ACI 209針對混凝土乾縮潛變之預測模式,(3)ASCE、AASHTO及中國大陸等有關斜張橋設計指針。研究結果顯示:(1)監測系統能合理反應斜張橋塔於施工階段之結構行為,而且不只是混凝土的應變,鋼筋之應力都會受到混凝土的乾縮潛變之影響而持續變化,(2)斜張鋼纜兩端喇叭套筒頂端與橡膠制振器中點之距離大約為鋼纜有效弦長,此有效長度之確認提供本橋日後檢測斜張鋼纜預力時之重要參考,(3)本研究所建立之三維有限元素分析模式能有效的預測斜張橋於載重試驗時規劃載重之主梁變形、PC主梁之縱向撓曲應變及斜張鋼纜之預力變化等結構行為。
ABSTRACT
Modern cable-stayed bridges, aesthetically appealing and technically innovative, have become increasingly popular world wide in the past decades. With the increasing span length, the fundamental behavior and characteristics of cable-stayed bridges become more complex and important for evaluating the safety of these bridges. This thesis presents a study on the behavior of Kao-Ping-Hsi Cable-Stayed Bridge, one of the major southern construction projects on the Second Freeway in Taiwan, based on testing data compare with analytical models and design specifications. The monitoring system of this bridge is also presented.
The experimental works include: (1) prediction of the effective length of stayed cables and variation of cable forces under field load testing, (2) main girder deflections and PC girder strains, and (3) shrinkage and creep strains of concrete at the base of pylon. The analytical methods include: (1) 3D computer analytical model, (2) ACI 209 predicted model for shrinkage and creep strains of concrete, and (3) ASCE, AASHTO, and China design specifications. The results show that: (1) the measured data of monitoring system can reasonably reflect the behavior of pylon under construction stage, (2) the effective length of the stayed-cable is approximately the length between the two mid-points of the neoprene seal and the trumpet end, and (3) the 3D finite element model can reasonably predict the structural behavior of the bridge, including main girder deflections, longitudinal flexural strain, and the variation of cable forces, under the various load conditions carried out in this study.
REFERENCES
1. Wenzel, H., (1998), “Cable stayed bridges – history, design, application.” Northern Gate Book Co. Ltd., Taipei, Taiwan, pp. 181-244.
2. Troitsky, M. S. (1977), “Cable-Stayed Bridges – theory and design.” Rainbow-Bridge Book Co. Ltd., Taipei, Taiwan, pp. 42-44.
3. Gimsing, N. J. (1997), “Cable Supported Bridges – 2nd ed.”, Wiley, London.
4. Lin Y. P. (1994),“Cable Stayed Bridge”,People’s Communication Press, Beijing.
5. Casas, J. R. (1994), “A combined method for measuring cable forces : The Cable-Stayed Alamillo Bridge, Spain.” Structural Engineering International, IABSE, Vol. 4, No. 4, pp. 235-240.
6. 交通部國道新建工程局,(1995),“燕巢九如段細部設計圖第381標STA.285+720.11 ~ STA. 288+360.00”,台北。
7. Mohsen, A. S., and Arockiasamy, M. (1996), “Field Instrumentation to Study the Time- Dependent Behavior in Sunshine Skyway Bridge. I” J. Brg. Engrg., ASCE, 1(2), pp. 76-86.
8. Mohsen, A. S., and Arockiasamy, M. (1996), “Analysis and Measured Strain in Sunshine Skyway Bridge. II” J. Brg. Engrg., ASCE, 1(2), pp. 87-97.
9. ACI Committee 209, (1982), “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures”, ACI manual of concrete practice, Detroit.
10. Gardner, N. J., and Zhao, J. W. (1993), “Creep and Shrinkage Revisited.” Mat. J., ACI, 90(3), pp. 236-246.
11. Mindess, S., and Young, J. F. (1981), “Concrete”, Prentice-Hall, Englewoad Cliffs, N. J. p.481
12. Reid, S. G., (1994), “Deformation of Concrete Due to Drying Creep”, Creep and Shrinkage Concrete Proceedings of the Fifth International RILEM Symposium, 1994, pp. 39-44.
13. Ojdrovic, R. P., and Zarghamee, M. S. (1996), “ Concrete Creep and Shrinkage Prediction from Short-Term Tests. ” Mat. J., ACI, 93(2), pp. 169-177.
14. Almudaiheem, J. A., and Hansen, W. (1987), “Effect of Specimen Size and Shape on Drying Shrinkage of Concrete”, Mat. J., ACI, 84(2), pp. 130-135.
15. ACI Committee 209, (1998), “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures”, ACI manual of concrete practice, Detroit.
16. ACI Committee 209, (2004), “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures”, ACI manual of concrete practice, Detroit.
17. Collins, T. M. (1989), “Proportioning High-Strength Concrete to Control Creep and Shrinkage”, Mat. J., ACI, 86(6), pp. 576-580.
18. Huo, X. S., Al-Omaishi, N., and Tadros, M. K. (2001), “Creep, Shrinkage and Modulus of High-Performance Concrete.” Mat. J., ACI, 98(6), pp. 450-457.
19. Bryant, A. H., and Vadhanavikkit, C. (1987), “ Creep, Shrinkage-Size, and Age at Loading Effects. ” Mat. J., ACI, 84(2), pp. 117~123.
20. Smadi, M. M., Slate, F. O., and Nilson, A. H. (1987), “Shrinkage and Creep of High-, Medium-, and Low-Strength Concretes, Including Overloading.” Mat. J., ACI, 84(3), pp. 224-234.
21. Dezi, L., Ianni, C., and Tarantino, A. M. (1993), “ Simplified Creep Analysis of Composite Beams with Flexible Connector.” J. Struct. Engrg., ASCE,119(5), pp. 1484-1497.
22. Samra, R. M. (1995), “New Analysis For Creep Behavior In Concrete Columns.” J. Struct. Engrg., ASCE, 121(3), pp. 399-407.
23. Wind tunnel test report of Kao-Ping-Hsi cable stayed bridge, (1994), Vienna Consulting Engineers and Danish Maritime Institute.
24. 交通部國道新建工程局,(1995),“高屏溪河川橋工程特定條款”,台北。
25. Fang, I. K., Chen, S. J., Chen, P. L., Chen, C. R., Fang, W. C., and Chen, C. C. (1999), “Monitoring system of Kao-Ping-Hsi cable-stayed bridge.” Proc. Structures for The Future – The Search for Quality Conf., IABSE, Rio de Janeiro, Brazil, pp. 532-539.
26. 方一匡、陳培麟、陳生金,“高屏溪斜張橋監測研究計畫—工作成果總報告”,台南(2001)。
27. 蔡同宏、莊輝雄,“淺談高屏溪橋斜張鋼纜施工”,中華技術,第五十七期,台北(2003)。
28. 蔡同宏、莊輝雄,“高屏溪橋斜張鋼纜索力檢核研究”,,中華技術,第五十八期,台北(2003)。
29. 洪茂松、陳國隆、羅財怡,“高屏溪斜張橋設計施工”,中華民國第四屆結構工程研討會,台北(1998)。
30. 夏明勝、凌凱、林國榮,“高屏溪斜張橋施工”,交通部國道新建工程局,台北(2000)。
31. 陳建州、莊輝雄、夏明勝,“高屏溪斜張橋風力效應研究”,中華民國第四屆結構工程研討會,台北(1998)。
32. 陳建州、莊輝雄、詹宏義、羅志仁,“高屏溪斜張橋預力混凝土箱型梁施工探討”,中華民國第四屆結構工程研討會,台北(1998)。
33. 凌凱,“高屏溪斜張橋橋塔施工”,中華民國第四屆結構工程研討會,台北(1998)。
34. 歐怡蘭、莊輝雄、楊顯樑,“高屏溪斜張鋼橋之吊裝”,中華民國第四屆結構工程研討會,台北(1998)。
35. 歐怡蘭、方文志、夏明勝、莊輝雄,“高屏溪斜張鋼橋之製作”,中華民國第四屆結構工程研討會,台北(1998)。
36. 陳君瑞、方一匡、陳建州、方文志,“高屏溪斜張橋載重試驗規劃”,中華民國第五屆結構工程研討會,南投(2000)。
37. 陳君瑞、方一匡、陳建州、張純青,“高屏溪斜張橋現地載重試驗”,中華民國第五屆結構工程研討會,南投(2000)。
38. Computers and Structures, Inc. (1995), “Integrated finite element analysis and design of structures.” SAP2000, Berkeley, Calif.
39. 郭俊長(2002), “單索面斜張橋喬塔承力變形行為分析” 碩士論文, 國立成功大學土木工程研究所, 台南, 台灣.
40. Neville, A. M., Dilger, W. H., and Brooks, J. J. (1983), “Concrete of Plain and Structural Concrete.” Longman, New York, pp. 255-256.
41. Gimsing, N. J. (1999), “History of cable-stayed bridges.” Proc. Cable-Stayed Bridges – Past, Present and Future Conf., IABSE, Malmo, Sweden, pp. 8-24.
42. Hulsey, J. L., and Delaney, D. K. (1993), “Static live load tests on a cable-stayed bridge.” Transp. Res. Rec. 1393, pp. 162-174.
43. Chang, C. C., Chang, T. Y. P., and Zhang, Q. W. (2001), “Ambient vibration of long-span cable-stayed bridge.” J. Brg. Engrg., ASCE, 6(1), pp. 46-53.
44. Zhang, Q. W., Chang, T. Y. P., and Chang, C. C. (2001), “Finite element model updating for the Kap Shui Mun cable-stayed bridge.” J. Brg. Engrg., ASCE, 6(4), pp. 285-293.
45. Cunha, A., Caetano, E., and Delgado, R. (2001), “Dynamic tests on large cable-stayed bridge.” J. Brg. Engrg., ASCE, 6(1), pp. 54-62.
46. Worsak, K. N., Yiu, A., and Brotton, D. M., (1992), “Mathematical modelling of cable- stayed bridges.” Structural Engineering International, IABSE, Vol. 2, No. 2, pp. 108-113.
47. AASHTO. Standard specifications for highway bridges. (1996), 16th Ed. American Association of State Highway and Transportation Officials, Washington, D. C.
48. Ren, W. X. (1999), “Ultimate behavior of long-span cable-stayed bridge.” J. Brg. Engrg., ASCE, 4(1), pp. 30-37.
49. Fleming, J. F., and Egeseli, E. A. (1980), “Dynamic behavior of a cable-stayed bridge.” Earthquake Engrg. And struct. Dyn., 8, pp. 1-16.
50. ASCE. Guidelines for the design of cable-stayed bridges. (1992), American Society of Civil Engineering.
51. Design specifications of highway cable stayed bridge ( on trial ). (1996), D.O.T., China.
52. Casas, J. R. (1994), “A combined method for measuring cable forces : The Cable-Stayed Alamillo Bridge, Spain.” Structural Engineering International, IABSE, Vol. 4, No. 4, pp. 235-240.
53. Zui, H., Shinke, T., and Namita, Y. (1996), “Practical formulas for estimation of cable tension by vibration method.” J. Struct. Engrg., ASCE, 122(6), pp. 651-656.
54. Shinke, T., Hironaka, K., Zui, H., and Nishimura, H. (1980), “ Practical formulas for estimation of cable tension by vibration method.” Proc., JSCE, 294, pp. 25-34 ( in Japanese)
55. Shimada, T. (1994), “Estimating method of cable tension from natural frequency of high mode”, Proc., JSCE, 501/1-29, pp. 163-171.(in Japanese)
56. Fang, I. K., Chen, J. R., Dong, S. L., Chang, I. S., and Zhuang, H. X., (2003),“Monitoring of Cable Forces for Kao-Ping-Hsi Cable-Stayed Bridge”, JCICHE., Taipei, Taiwan, pp. 759-77 (in Chinese).
57. Chang, I. S. (2001), “Cable forces monitoring for cable-stayed bridge.” Master thesis, National Cheng Kung University, Department of Civil Engineering, Tainan, Taiwan.
58. Dong. S. L. (2000), “Cable forces monitoring for cable-stayed bridge.” Master thesis, National Cheng Kung University, Department of Civil Engineering, Tainan, Taiwan.
59. Humar, J. L. (1990), “Dynamics of Structures”, Prentice-Hall, Inc., Englewood Cliffs, N.J.