簡易檢索 / 詳目顯示

研究生: 吳叡雯
Wu, Jui-Wen
論文名稱: 退款政策對訂閱模式的影響
The Impact of Refund Policies in Subscription-based Model
指導教授: 吳政翰
Wu, Cheng-Han
學位類別: 碩士
Master
系所名稱: 管理學院 - 經營管理碩士學位學程(AMBA)
Advanced Master of Business Administration (AMBA)
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 79
中文關鍵詞: 訂閱模式退款政策
外文關鍵詞: Subscription-based Model, Refund Policies
相關次數: 點閱:10下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著訂閱式服務普及,企業多以「不可退款」政策穩定收入,但這可能引起消費者不滿、感知風險上升。當消費者在訂閱期間欲中途取消,卻無法獲得尚未使用部分的退款,不僅可能導致消費糾紛,甚至影響企業的品牌形象。因此,企業如何在吸引消費者、提升獲利與提供退款間取得平衡,須更審慎的對待此議題。
    有鑑於此,本研究建構模型來探討,單一企業在同質消費者參與的訂閱制服務中,應如何設計退款政策以達成獲利最大化。模型假設消費者已完成購買行為,並可於任意時間點取消訂閱。企業將提供其中一種退款策略:不提供退款 NR 、全額退款 FR 、依使用比例退款 PR 、依使用比例退款且加收處置費用 PF。同時,考量消費者對訂閱制服務價值衡量、取消時間點、處置費用水準與企業定價行為,並以消費者期望效用與企業期望獲利最大化作為雙方決策依據。最後,依各情境之決策及獲利進行比較,找出企業的優勢策略與達成條件。
    研究結果顯示,(1) 企業退款策略具有使用比例限制,當消費者取消時間較晚時,即使用比例偏高,企業不再提供退款。(2) 當不確定是否有退款激勵消費者購買行為之效果,企業應採取不提供退款。(3)若退款可以激勵消費者購買行為,即獲利乘數較高,且在消費者使用比例較小時,FR 策略才能成為優勢策略。(4) 有獲利乘數效果下,若消費者取消時間點較晚時,且處置費用較大時,PR 情境為優勢策略。(5) 有獲利乘數效果下,對於 PF 情境,若消費者取消時間點較小時,處置費用有較大調整空間,其設計高或低,皆有可能成為優勢策略。若消費者取消時間點較大時,則處置費用較小時可能成為優勢策略。
    綜上所述,本研究探討各退款政策下的訂閱制服務定價,進一部比較企業在面對消費者不同取消時間點下,所採取的退款策略如何影響獲利,期望對訂閱模式的企業發展策略具有實務參考價值。

    As subscription-based services become increasingly prevalent, many firms adopt a no refund policy to ensure stable revenues. However, when consumers attempt to cancel their subscriptions midterm but are unable to obtain a refund for unused portions, it may result in disputes and damage the firm's brand image. Thus, firms must carefully balance consumer appeal, profit maximization, and refund guarantees. This study constructs a model to investigate how a single firm, serving a homogeneous consumer in a subscription setting, should design its refund policy to achieve profit maximization. The model assumes that the consumer has already subscribed and may cancel at any point during the subscription period. The firm selects one of refund strategies: no refund NR,full refund FR, partial refund based on usage PR, and partial refund based on usage and plus disposal fee PF. The model incorporates the consumer's perceived value of the service, cancellation timing, disposal fee, and the firm's pricing decision. Both consumer expected utility and the firm's expected profit serve as decision criteria.
    The results reveal the following: (1) No refunds are offered when the consumer cancels at a later time, having used a large portion of the service.(2) When the effect of refund policies on purchase intention is uncertain, the firm should adopt a no-refund strategy.(3) If refunds strongly incentivize purchases—reflected in a higher profit multiplier—the FR strategy is optimal for expanding potential consumer reach.(4) Under a positive multiplier effect, if cancellation occurs later and disposal costs are high, the PR strategy becomes more advantageous.(5) In the PF scenario, when cancellations occur early, a broader range of disposal fee levels—whether high or low—may lead to optimal outcomes. Conversely, if cancellation occurs late, lower disposal fees are more likely to yield superior results.
    In conclusion, this study explores how different refund strategies affect pricing in subscription-based services and compares the profit implications under varying consumer cancellation timing.

    摘要i ABSTRACT ii INTRODUCTION iii METHODS iii RESULTS AND DISCUSSION iv CONCLUSION v 誌謝i 目錄ii 表目錄v 圖目錄vi 第一章緒論1 1.1研究背景與動機1 1.2研究目的3 1.3研究架構4 第二章文獻回顧5 2.1訂閱式服務5 2.2退款政策7 2.3小結9 第三章退款策略對企業定價與獲利之影響分析10 3.1問題描述與定義10 3.2研究假設11 3.3模型建構13 3.3.1效用式與獲利式13 3.3.2情境NR:不提供退款15 3.3.3情境FR:全額退款17 3.3.4情境PR:依使用比例退款19 3.3.5情境PF:依使用比例退款且加收處置費用22 第四章性質分析與數值分析29 4.1價格與退款分析30 4.1.1價格對消費者取消訂閱時間點之敏感度分析30 4.1.2退款對消費者取消訂閱時間點之敏感度分析31 4.1.3價格對處置費用之敏感度分析33 4.1.4退款對處置費用之敏感度分析34 4.2獲利分析37 4.2.1獲利對處置費用之敏感度分析37 4.2.2獲利對消費者取消訂閱時間點之敏感度分析40 4.3各情境下之獲利比較43 4.3.1處置費用與消費者取消訂閱時間點變動下之優勢策略分析43 4.3.2獲利乘數δ與處置費用變動下之優勢策略分析44 4.3.3獲利乘數β與消費者取消訂閱時間點變動下之優勢策略分析45 第五章企業提供退款與獲利乘數的關係46 5.1模型的獲利乘數設計46 5.2消費者效用式:U=Emax{V, r}-p 5.3消費者效用式:U=Emax{V, r}-tp 5.4消費者效用式:U=Emax{(1-t^2)V, r}-tp 5.5小結51 第六章結論與未來研究方向52 6.1結論52 6.2未來研究方向55 參考文獻56 附錄58

    Baek, H. and Kim, K. (2022). An exploratory study of consumers’ perceptions of product types and factors affecting purchase intentions in the subscription economy: 99 subscription business cases. Behavioral Sciences, 12(6):179.
    Benjaafar, S. and Hu, M. (2021). Introduction to the special issue on sharing economy and innovative marketplaces. Manufacturing amp; Service Operations Management, 23(3):549–552.
    Bischof, S. F., Boettger, T. M., and Rudolph, T. (2020). Curated subscription commerce: A theoretical conceptualization. Journal of Retailing and Consumer Services, 54:101822.
    Bower, A. B. and Maxham, J. G. (2012). Return shipping policies of online retailers: Normative assumptions and the long-term consequences of fee and free returns. Journal of Marketing, 76(5):110–124.
    Chang, H.-H. and Yang, T.-S. (2022). Consumer rights or unethical behaviors: Exploring the impacts of retailer return policies. Journal of Retailing and Consumer Services,64:102779.
    Chou, C. and Kumar, V. (2024). Estimating demand for subscription products: Identification of willingness to pay without price variation. Marketing Science, 43(4):797–816.
    Cobzaru, P. and Tugui, A. (2024). The subscription economy and its contribution to the global economy. Management Studies, 12(3).
    Einav, L., Klopack, B., and Mahoney, N. (2023). Selling subscriptions. National Bureau of Economic Research.
    Guo, L. (2009). Service cancellation and competitive refund policy. Marketing Science,
    28(5):901–917.
    Li, Y., Li, K., and Gharehgozli, A. (2022). Optimal return and refund polices for perishable food items with online grocery shopping. International Journal of Production Research,61(19):6519–6532.56
    Mart´ınez-L´opez, F. J., Feng, C., Li, Y., and L´opez-L´opez, D. (2022). Using instant refunds to improve online return experiences. Journal of Retailing and Consumer Services,68:103067.
    Nageswaran, L., Cho, S.-H., and Scheller-Wolf, A. (2020). Consumer return policies in omnichannel operations. Management Science, 66(12):5558–5575.
    Oblander, S. and McCarthy, D. M. (2023). Frontiers: Estimating the long-term impact of major events on consumption patterns: Evidence from covid-19. Marketing Science,42(5):839–852.
    Taleizadeh, A. A., Varzi, A. M., Amjadian, A., Noori-daryan, M., and Konstantaras, I.
    (2023). How cash-back strategy affect sale rate under refund and customers'credit. Operational Research, 23(1).
    Wu, B., Guo, G., and Luo, P. (2024). The effect of subscriptions on customer engagement.Journal of Business Research, 178:114638.
    Zheng, J.,Wang, Y., and Tan, Y. (2023). Platform refund insurance or being cast out: Quantifying the signaling effect of refund options in the online service marketplace. Information Systems Research, 34(3):910–934.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE