簡易檢索 / 詳目顯示

研究生: 謝翔琳
Hsieh, Xiang-Lin
論文名稱: 具三明治結構之可電控液晶雷射研究
Electrically tunable sandwich-like liquid crystal laser
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 73
中文關鍵詞: 聚合物穩定膽固醇液晶液晶雷射分佈式布拉格反射鏡共振模態
外文關鍵詞: polymer-stabilized cholesteric liquid crystal, distributed Bragg reflector, sandwich structure, liquid crystal laser
相關次數: 點閱:38下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究與發展具有三明治結構之可電控聚合物穩定膽固醇液晶(Polymer-stabilized cholesteric liquid crystal,PSCLC)複合雷射。此雷射樣品包含三層結構,中間層為染料摻雜向列型液晶(Dye-doped nematic liquid crystal,DDNLC),兩側為PSCLC層。中間層的染料具有增益介質功能,外側的PSCLC層作為分佈式布拉格反射鏡,被激發光源所激發的螢光可被兩側PSCLC反射於DDNLC增益層中達到共振條件,進一步在數個共振模態競爭中產生雷射閾值最低之雷射輸出。
    實驗結果發現,以強紫外光聚合完成的PSCLC樣品不僅產生聚合物網絡穩固住空間中膽固醇液晶的螺旋結構,且隨之產生許多離子雜質。在外加直流電壓時,這些離子重新分佈導致PSCLC樣品內部產生螺距梯度,進而達到反射波帶大量變寬效果。另外,中間DDNLC層除染料有增益效果,液晶則具有波板效果,做為半、全波板時,於元件反射波帶內之反射率分別為相對極大值與極小值,雷射共振模態將會在反射率相對極小值時獲得。當外加相同直流電壓於兩側之PSCLC樣品時,反射波帶增寬會造成共振模態數量的增加,等效於反射波帶兩側共振模態在頻譜上可往外位移,當施加的電壓越高則兩側共振模態的位移量會越大,此時所產生的雷射輸出波長也會以跳躍式的方式位移。
    此外,本論文也同時電控兩側的PSCLC層及中間的DDNLC層,共振模態也會因為電控DDNLC層而跟著細微變化,以至於雷射輸出波長可調程度可以更加細微,也增加了雷射輸出訊號的數量與調控的細緻度。

    This thesis demonstrates an electrically tunable polymer-stabilized liquid crystal (PSCLC) composite laser with a sandwich structure, including the dye-doped nematic liquid crystal (DDNLC) layer in the middle and the PSCLC layers at two sides. The dye in the middle layer functions as a gain medium, and the set of the outer PSCLC layers serves as a distributed Bragg reflector. The fluorescence emission excited by the pump laser can be reflected by the PSCLC reflectors to reach resonance conditions and further enhanced in the DDNLC gain layer to produce the laser output with the lowest lasing threshold at the competition of several resonance modes. Experimental results show that the photopolymerization of the PSCLC layers in the composite laser produces a polymer network to stabilize the helical structure of the planar CLC and yields many ionic impurities. When a DC voltage is applied to the PSCLC layers, the redistribution of the ions results in a pitch gradient in the layers and then causes the broadening of the reflection band of the PSCLC layers. The dye in the middle DDNLC layer has a gain effect and a wave plate effect. When the DDNLC layer is used as a half- and full-wave plate, the reflectivity in the reflection band of the composite sample will have relatively maximum and minimum values. The laser resonance mode is obtained when the reflectivity is relatively the highest. When the DC voltage is applied to the PSCLC layers, the broadening of the reflection band can increase the number of resonance modes accommodated in this band. When the applied voltage is higher, the generated laser output wavelength will shift more in a stepwise manner in spectrum. The application of an AC voltage on the DDNLC layer can achieve the fine-tuning of the laser output wavelength.

    中文摘要 I SUMMARY II 誌謝 XIII 目錄 XIV 圖目錄 XVII 表目錄 XXI 第一章 緒論 1 第二章 液晶介紹 4 2.1 液晶之起源 4 2.2 液晶的分類 5 2.2.1 溶致型液晶 5 2.2.2 熱致型液晶 5 2.3 液晶物理特性 11 2.3.1 光學異向性和雙折射性 11 2.3.2 介電異向性 16 2.3.3 溫度對液晶的影響 18 2.3.4 連續彈性體理論 19 第三章 膽固醇液晶介紹 21 3.1 膽固醇液晶的光學特性 21 3.1.1 光波在均勻非均向性介質的傳播 21 3.1.2 膽固醇液晶的布拉格選擇性反射 22 3.2 影響膽固醇液晶螺距之因素 24 3.2.1 溫度 24 3.2.2 摻雜濃度 25 3.2.3 磁場 25 3.2.4 電場 26 第四章 聚合物穩定膽固醇液晶 28 4.1 聚合物穩定膽固醇液晶的背景 28 4.1.1 聚合反應 30 4.2 聚合物穩定膽固醇液晶結構 31 4.2.1 聚合物穩定膽固醇液晶結構受外加直流電壓調制之物理機制 32 4.3 法布立-培若干涉儀 33 4.4 分佈式布拉格反射鏡之三明治結構 35 第五章 樣品製備與實驗架設 38 5.1 實驗材料 38 5.2 實驗樣品製備流程 41 5.2.1 玻璃基板的清潔 42 5.2.2 製作空樣品 42 5.2.3 材料配方調配 43 5.2.4 製作聚合物穩定膽固醇液晶樣品 44 5.2.5 製作三明治結構之樣品 45 5.3 實驗架設 45 第六章 實驗結果與討論 48 6.1 聚合物穩定膽固醇液晶及三明治結構之電控反射特性 48 6.1.1 外加直流電壓對聚合物穩定膽固醇液晶樣品之影響 48 6.1.2 外加直流電壓對三明治結構樣品之影響 51 6.2 三明治結構樣品在不同電壓下之雷射研究 54 6.3 三明治結構樣品於電控DDNLC層之雷射研究 58 6.3.1 電控三明治樣品中的DDNLC層之穿透頻譜探討 58 6.3.2 電控三明治樣品中DDNLC層之雷射研究 60 第七章 結論與未來展望 67 7.1 結論 67 7.2 未來展望 67 參考文獻 68

    [1] P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals,” (Clarendon Press, New York, 1993).
    [2] D. K. Yang and S. T. Wu, “Fundamental of liquid crystal devices,” (Wiley, 2006).
    [3] Y. H. Huang, M. Jin, and S. C. Zhang, “Polarization-independent bandwidth-variable tunable optical filter based on cholesteric liquid crystals,” Jpn. J. Appl. Phys. 53(7), 4 (2014).
    [4] K. H. Kim, D. H. Song, Z. G. Shen, B. W. Park, K. H. Park, J. H. Lee, and T. H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express 19(11), 1017410179 (2011).
    [5] J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389+ (2016).
    [6] V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27(6), 369416 (2003).
    [7] H. Coles, and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676685 (2010).
    [8] I. P. Ilchishin, and E. A. Tikhonov, “Dye-doped cholesteric lasers: Distributed feedback and photonic bandgap lasing models,” Prog. Quantum Electron. 41, 122 (2015).
    [9] J. D. Lin, M. H. Hsieh, G. J. Wei, T. S. Mo, S. Y. Huang, and C. R. Lee, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21(13), 1576515776 (2013).
    [10] L. J. Chen, J. D. Lin, S. Y. Huang, T. S. Mo, and C. R. Lee, “Thermally and Electrically Tunable Lasing Emission and Amplified Spontaneous Emission in a Composite of Inorganic Quantum Dot Nanocrystals and Organic Cholesteric Liquid Crystals,” Adv. Opt. Mater. 1(9), 637643 (2013).
    [11] Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded with a Liquid Crystal Nanopore Network,” Adv. Mater. 23(46), 5498+ (2011).
    [12] T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39(22), 64906493 (2014).
    [13] S. M. Wood, F. Castles, S. J. Elston, and S. M. Morris, “Wavelength-tuneable laser emission from stretchable chiral nematic liquid crystal gels via in situ photopolymerization,” RSC Adv. 6(38), 3191931924 (2016).
    [14] A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 48824885 (2012).
    [15] S. T. Hur, B. R. Lee, M. J. Gim, K. W. Park, M. H. Song, and S. W. Choi, “Liquid-Crystalline Blue Phase Laser with Widely Tunable Wavelength,” Adv. Mater. 25(21), 30023006 (2013).
    [16] K. Y. Yu, S. H. Chang, C. R. Lee, T. Y. Hsu, and C. T. Kuo, “Thermally tunable liquid crystal distributed feedback laser based on a polymer grating with nanogrooves fabricated by nanoimprint lithography,” Opt. Mater. Express 4(2), 234240 (2014).
    [17] H. P. Yu, B. Y. Tang, J. H. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13(18), 72437249 (2005).
    [18] T. H. Lin, H. C. Jau, C. H. Chen, Y. J. Chen, T. H. Wei, C. W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 3 (2006).
    [19] Z. G. Zheng, B. W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3(11), 24622470 (2015).
    [20] H. T. Bian, F. F. Yao, H. Liu, F. Huang, Y. B. Pei, C. F. Hou, and X. D. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41(10), 14361441 (2014).
    [21] L. De Sio, G. Palermo, V. Caligiuri, A. E. Vasdekis, A. Pane, J. W. Choi, L. Maffli, M. Niklaus, H. R. Shea, and C. Umeton, “Electro and pressure tunable cholesteric liquid crystal devices based on ion-implanted flexible substrates,” J. Mater. Chem. C 1(47), 77987802 (2013).
    [22] Y. Inoue, M. Hattori, H. Kubo, and H. Moritake, “Faster pitch control of cholesteric liquid crystals,” Jpn. J. Appl. Phys. 56(8), 4 (2017).
    [23] V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. E. McConney, K. M. Lee, T. J. Bunning, R. Zola, H. Nemati, D. K. Yang, and T. J. White, “Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals,” Opt. Mater. Express 4(7), 14651472 (2014).
    [24] H. Nemati, S. Liu, R. S. Zola, V. P. Tondiglia, K. M. Lee, T. White, T. Bunning, and D. K. Yang, “Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies,” Soft Matter 11(6), 12081213 (2015).
    [25] E. Sahar, and D. Treves, “BLEACHING AND DIFFUSION OF LASER-DYES IN SOLUTION UNDER HIGH-POWER UV IRRADIATION,” Opt. Commun. 21(1), 2024 (1977).
    [26] Y. S. Lo, Y. M. Liu, and H. C. Yeh, “Low-voltage and wide-band tuning of lasing in a dye-doped liquid-crystal sandwich structure,” Opt. Express 23(23), 3042130428 (2015).
    [27] J. B. Guo, H. Wu, F. J. Chen, L. P. Zhang, W. L. He, H. Yang, and J. Wei, “Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure,” J. Mater. Chem. 20(20), 40944102 (2010).
    [28] O. Lehmann, “Über fliessende Krystalle,” Z. Phys. Chem. 4, 462472 (1889).
    [29] P. Oswald and P. Pieranski, “Nematic and cholesteric liquid crystals: Concepts and Physical properties illustrated by experiments,” CRC Press (1997).
    [30] P. J. Collings and M. Hird, “Introduction to liquid crystals: Chemistry and Physics,” CRC Press (1997).
    [31] G. Vertogen and W. H. de Jeu, “Thermotropic liquid crystals: Fundamentals,” Springer-Verlag Berlin Heidelberg 45 (1988).
    [32] E. B. Priestley, “Introduction to liquid crystals,” Springer US, MA (1975).
    [33] 松本正一、角田市良(劉瑞祥 譯) “液晶之基礎與應用” 國立編譯館出版,中華民國九十二年。
    [34] F. Hadjaj, A. Belghachi, A. Halmaoui, M. Belhadj, H. Mazouz, “Study of a Fabry-Perot Resonator,” 7(12), 17131717 (2013).
    [35] R. B. Meyer, “EFFECTS OF ELECTRIC AND MAGNETIC FIELDS ON STRUCTURE OF CHOLESTERIC LIQUID CRYSTALS,” Appl. Phys. Lett. 12(9), 281& (1968).
    [36] M. J. Stephen, and J. P. Straley, “PHYSICS OF LIQUID-CRYSTALS,” Rev. Mod. Phys. 46(4), 617704 (1974).
    [37] A. Yariv, “Optical Electronics in Modern Communications,” (Oxford University Press, New York, 1997).
    [38] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics: Ch6 Polarization and Crystal Optics,” Wiley Press (1991).
    [39] I. C. Khoo, “Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena,” (John Wiley & Sons, New York, 1995).
    [40] J. Li, C. H. Wen, S. Gauza, R. B. Lu, and S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1(1), 5161 (2005).
    [41] H. Zocher, “The effect of a magnetic field on the nematic state,” Trans. Faraday Soc. 29, 09450957 (1933).
    [42] F. C. Frank, “ON THE THEORY OF LIQUID CRYSTALS,” Discussions of the Faraday Society 25), 1928 (1958).
    [43] C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29, 08830898 (1933).
    [44] P. Sheng, “Introduction to the elastic continuum theory of liquid crystals,” Springer, Boston, MA (1975).
    [45] P. G. de Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun. 6, 163165 (1968).
    [46] F. Castles, S. C. Green, D. J. Gardiner, S. M. Morris, and H. J. Coles, “Flexoelectric coefficient measurements in the nematic liquid crystal phase of 5CB,” AIP Adv. 2(2), 10 (2012).
    [47] J. D. Lin, Y. S. Zhang, J. Y. Lee, T. S. Mo, H. C. Yeh, and C. R. Lee, “Electrically Tunable Liquid-Crystal-Polymer Composite Laser with Symmetric Sandwich Structure,” Macromolecules 53(3), 913921 (2020).
    [48] S.G. Lipson, H. Lipson, and D.S. Tannhauser, “Optical physics, 3rd ed.,” (Cambridge University Press, 2008).
    [49] S. Y. Lu, and L. C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 3 (2007).
    [50] R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett. 41(12B), L1482L1484 (2002).

    下載圖示 校內:2024-10-18公開
    校外:2024-10-18公開
    QR CODE