| 研究生: |
許庭維 Hsu, Ting-Wei |
|---|---|
| 論文名稱: |
多孔性材料黏彈特性與流動相依行為之區別 Discriminating the Viscoelastic Properties from Flow-Dependent Behavior in Porous Material |
| 指導教授: |
林育芸
Lin, Yu-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 多孔黏彈性材料 、近似模型 、有限元素模擬 、時間相依柏松比 |
| 外文關鍵詞: | poroviscoelstic material, approximate model, finite element simulation, time-dependent Poisson's ratio |
| 相關次數: | 點閱:131 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多孔性材料是一種由固體骨架和存在於骨架孔隙間之流體所組成的雙相材料。除了固體骨架與流體間速度相依交互作用所產生的效應外,固體骨架本身也可能呈現與時間相依之黏彈特性。這兩者其物理機制不同之處為流動相依行為與排水路徑的長短有關,而黏彈行為則不。假設固體骨架之本質柏松比為定值下,Strange et al. (2013)提出一近似模型,多孔黏彈性材料之鬆弛行為是以上兩種物理機制的乘積。本文將仿照Strange 之方式延伸此近似模型,考慮到固體骨架之本質柏松比隨時間變化之實際情形。我們透過有限元素套裝軟體 ABAQUS 模擬三種常見的實驗,並利用數值結果測定多孔性材料參數。本文對於本質柏松比為時間相依的多孔黏彈性材料參數,進行了兩種方法測定:一是根據近似模型,二是由Laplce變換和數值逆轉換所得之解。欲在沒有任何前提假設下求得多孔材料的本質黏彈性質,我們建議當本質黏彈行為主宰時,在無圍束試驗下量測側向變形或在圍束試驗下量測側向力。改變試體尺寸重複實驗並使用適當的正規化,即可區分流動相依與黏彈反應,以決定此兩種時間相依行為的特性。
The porous material is a biphasic material composed of a solid skeleton and a fluid (liquid or gas) filled the voids. In addition to the effect of the rate-dependent interaction between two phases, the solid phase may exhibit intrinsic viscoelastic behavior. The physical mechanisms are different in that flow-dependent behavior varies with specimen size while viscoelastic behavior does not. Strange et al. (2013) offer an approximate model in which the poroviscoelastic load-relaxation is the product of the poroelastic and viscoelastic responses, based on constant intrinsic Poisson's ratio. The present research extends the Strange’s approximate model to include the poroviscoelastic material with time-dependent intrinsic Poisson’s ratio. We simulate three common experiments by finite element software ABAQUS and use the numerical data of different specimens to characterize the poroviscoelasticity of porous material. For poroviscoelastic materials with time-dependent intrinsic Poisson’s ratios, the characterizations are carried out by two methods: one is based on the modified approximate model, and the other is based on the solutions obtained from Laplace transform and numerical inverse transform. To obtain the intrinsic viscoelastic behavior including Poisson’s ratio without prior assumption, we suggest to measure lateral displacements in unconfined compression test or the lateral loads in confined compression tests, when the intrinsic viscoelastic behavior is dominated. Changing the specimen size and using appropriate normalization allow us to separate the poroelastic and viscoelastic responses, and thus determine both properties successfully.
ABAQUS 6.10 User’s Manual
Abousleiman, Y., Cheng, A. H. D., Jiang, C., and Roegiers, J. C., “A Micromechanically
Consistent Poroviscoelasticity Theory for Rock Mechanics Applications,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 1177-1180, 1993.
Abousleiman, Y., Cheng, A. H. D., Jiang, C., and Roegiers, J. C., “Poroviscoelastic Analysis of Borehole and Cylinder Problems,” Acta Mechanica, 119(1), 199-219, 1996.
Armstrong, C. G., Lai, W. M., and Mow, V. C., “An Analysis of the Unconfined Compression of Articular Cartilage,” Journal of Biomechanical Engineering, 106(1), 165-173, 1984.
Biot, M. A., “General Theory of Three Dimensional Consolidation,” Journal of Applied Physics, 12(2), 155-164, 1941.
Biot, M. A., “Theory of Stress-Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena,” Journal of Applied Physics, 25(11), 1385-1391, 1954.
Biot, M. A., “Theory of Deformation of a Porous Viscoelastic Anisotropic Solid,” Journal of Applied Physics, 27(5), 459-467, 1956.
Biot, M. A., and Willis D. G., “The Elastic Coefficients of the Theory of Consolidation,” Journal of Applied Mechanics, 24, 594-601, 1962.
Biot, M. A., “Mechanics of Deformation and Acoustic Propagation in Porous Media,” Journal of Applied Physics, 33(4), 1482-1498, 1962.
Cheng, A. H. D., Sidauruk, P., “Approximate Inversion of the Laplace Transform,” The Mathematic Journal, 4(2), 76-82, 1994.
Cheng, L., Xia, X., Scriven, L. E., and Gerberich, W. W., “Spherical-Tip Indentation of Viscoelastic Material,” Mechanics of Materials, 37(1), 213-226, 2005.
Detournay, E., and Cheng, A. H. D., “Fundamentals of Poroelasticity,” Chapter 5 in Comprehensive Rock Engineering: Principles, Practice and Projects, 2, 113-171, 1993.
Findley, W. N., Lai, J. S., and Onaran, K., “Creep and Relaxation of Nonlinear Viscoelastic Materials: With an Introduction to Linear Viscoelasticity,” Dover, New York, 1989.
Galli, M, Comley, K. S. C., Shean T. A. V., and Oyen, M. L., “Viscoelastic and Poroelastic Mechanical Characterization of Hydrated Gels,” Journal of Materials Research, 24(3), 973-979, 2009.
Johnson, K., “Contact Mechanics,” Cambrige University Press, Cambridge, 1985.
Mak, A. F., “The Apparent Viscoelastic Behavior of Articular Cartilage-The Contributions from the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows,” Journal of Biomechanical Engineering, 108(2), 123-130, 1986.
Mattice, J. M., Lau, A. G., Oyen, M. L., and Kent, R. W., “Spherical Indentation Load-Relaxation of Soft Biological Tissues,” Journal of Materials Research, 21(8), 2003-2010, 2006.
Mow, V. C., Kuei, S. C., Lai, W. M., and Armstrong, C. G.., “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” Journal of Biomechanical Engineering, 102(1), 73-84, 1980.
Hay, J. L., and Wolff, P. J., “Small Correction Required When Applying the Hertzian Contact model to Instrumented Indentation data,” Journal of Materials Research, 16(5), 1280-1286, 2001.
Hayes, W. C., and Mockros L. F., “Viscoelastic Properties of Human Articular Cartilage,” Journal of Applied Physics, 31(4), 562-568, 1971.
Hayes, W. C., and Bodine, A. J., “Flow Independent Viscoelastic Properties of Articular Cartilage Matrix,” Journal of Biomechanics, 11, 407-419, 1978.
Hu, Y., Zhao, X., Vlassak, J. J., and Suo, Z., “Using Indentation to Characterize the Poroelasticity of Gels,” Applied Physics Letters, 96(12), 121904, 2010.
Hu, Y., Chan, E. P., Vlassak, J. J., and Suo, Z., “Poroelastic Relaxation Indentation of Thin Layers of Gels,” Journal of Applied Physics, 110, 086103, 2011.
Hoog, F. R. DE, Knight, J. H., and Stokes, A. N., “An Improved Method for Numerical Inversion of Laplace Transforms,” SIAM Journal on Scientific Computing, 3(3), 357-366, 1982.
Lin, D. C., Torricelli, P., Chiumiento, A., Facchini, A., and Barbucci, R., “Spherical Indentation of Soft Matter Beyond the Hertzian Regime: Numerical and Experimental Validation of Hperelastic Models,” Biomechanics and Modeling in Mechanobiology, 8(5), 345-358.
Liu, K., Chan, and Ovaert, T. C., “Poroviscoelastic Constitutive Modeling of Unconfined Creep of Hydrogels Using Finite Element Analysis with Integrated Optimization Method,” Journal of the Mechanical Behavior of Biomedical Materials, 4(3), 440-450, 2011.
Schanz, M., and Cheng, A. H. D., “Dynamic Analysis of a One Dimensional Poroviscoelastic Column,” Journal of Applied Mechanics, 68(2), 192-198, 2001.
Setton, L. A., Zhu, W., and Mow, V. C., “The Biphasic Poroviscoelstic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior,” Journal of Biomechanics, 26(4), 581-592, 1993.
Soltz, M. A., and Ateshian, G. A., “Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression,” Journal of Biomechanics, 31(10), 927-934, 1998.
Spirt, A. A., Mak, A. F., and Wassell, R. P., “Nonlinear Viscoelastic Properties of Articular Cartilage in Shear,” Journal of Orthopaedic Research, 7(1), 43-49, 1989.
Stehfest, H., “Numerical Inversion of Laplace Transforms,” Communications of the ACM, 13(1), 47-49, 1970.
Strange, D. G. T., Fletcher, T. L., Tonsomboon, K., Brawn, H., Zhao, X. and Oyen, M. L., “Separating Poroviscoelastic Deformation Mechanisms in Hydrogels,” Applied Physics Letters, 102(3), 031913, 2013.
Zhao, X., Huebsch, N., Mooney, D.J., and Suo, Z., “Stress-relaxation behavior in gels with ionic and covalent crosslinks,” Journal of Applied Physics, 107(6), 063509, 2010.
Zhu, W., Mow, V. C., Koob, T, J., and Eyre, D. R., “Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments,” Journal of Orthopaedic Research, 11(6), 771-781, 1993.