| 研究生: |
吳伊旎 Wu, Yi-ni |
|---|---|
| 論文名稱: |
透明可見光催化二氧化鈦自潔表面的製備與鑑定 Fabrication and Characterization of Transparent Visible-Light-Active TiO2 Self-Cleaning Surfaces |
| 指導教授: |
楊毓民
Yang, Yu-min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 奈米粒子薄膜 、抗反射 、高溫鍛燒 、靜電逐層組裝 、可見光催化二氧化鈦 、自潔表面 、氮摻雜 、穿透度 |
| 外文關鍵詞: | calcination, nitrogen-doped, self-cleaning surface, transmittance, antireflection property, visible-light- active TiO2, electrostatic layer-by-layer assembly (ELbL), nanoparticle thin film |
| 相關次數: | 點閱:109 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在於製備透明且具有可見光催化的二氧化鈦多功能自潔奈米粒子薄膜。薄膜的製備是運用全奈米粒子的靜電逐層(ELbL )組裝技術進行,製程中先將22nm 的二氧化矽奈米粒子與7nm 的二氧化鈦奈米粒子交替逐層組裝於玻璃基板上,再於氨氣氣氛下鍛燒以獲得透明的氮摻雜二氧化鈦可見光催化自潔薄膜,並與未經氮摻雜的二氧化鈦薄膜比較其自潔效果。
由掃描式電子顯微鏡剖面觀測及橢圓儀分析的實驗結果顯示,以靜電逐層組裝技術可以得到厚度呈線性成長的多層奈米粒子薄膜。但當雙層數目超過40 時,鍛燒時薄膜會龜裂,在掃描式電子顯微鏡下以低倍率可以觀測到大小不一的區塊,造成平均穿透度下降且低於玻璃;而以每30雙層重複鍛燒的製程則可製備高達60 雙層且具有94%平均穿透度的透明奈米粒子薄膜。實驗結果也顯示,透明的二氧化鈦粒子薄膜在氨氣氣氛下以高溫鍛燒可以成功地進行氮摻雜,並將光的吸收延伸至可見光區域,而平均穿透度大約只有1%的降低。此外,氮摻雜二氧化鈦奈米粒子薄膜在可見光下的光催化自潔效果隨氮含量變化有一最佳值,其中以500℃鍛燒1 小時的薄膜降解亞甲藍的效果最佳。未經氮摻雜的二氧化鈦薄膜在可見光下的光催化自潔效果則小於氮摻雜二氧化鈦薄膜。
A transparent, visible-light-active TiO2 self-cleaning surface exhibit antireflection, and self-cleaning properties have been prepared via electrostatic layer-by-layer assembly technique. Fabricate the films by ELbL with TiO2 and SiO2 nanoparticles. Then calcine the coatings under ammonia gas flow with different temperature to obtain the nitrogen-doped TiO2 self-cleaning surfaces, while the coatings without doping calcine under air.
Two process has been discussed in the research. The coatings fabricated by ELbL assembly indicate the linearly growth behavior, however, the transmittance decrease with increasing number of bilayers due to light scattering ; The repeated calcination process has progressed in this problem, which show antireflection property (T=94%) even up to 60-bilayer.Visible-light-active TiO2 self-cleaning surfaces is obtained by calcination under ammonia gas flow with different temperature which decrease the transmittance 1% only; moreover, there is an optimum experimental condition (500℃/1hr) to show best photocatalytic activity which is evaluated by the
decomposition of methylene blue with visible light illumination.
Aarik, J., Aidla, A., Kiisler, A.A., Uustare, T., Sammelselg, V., ”Effect of crystal structure on optical properties of TiO2 films grown by atomic layer
deposition,” Thin Solid Films, 305, 270-273 (1997)
Ariga, K., Hill, J.P., Ji, Q., “ Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic
application,” Phys. Chem. Chem. Phys., 9, 2319-2340 (2007)
Asahi,R., Morikawa,T., Ohwaki, T., Aoki, K., Taga, Y., “ Visible-light photocatalysis in nitrogen-doped titanium oxides, ” Science, 293, 269-271 (2001)
Barthlott, W. and Neinhuis, C., “Purity of the Sacred Lotus, or escape from contamination in biological surfaces,” Planta, 202, 1-8 (1997)
Bouras, P., Stathatos, E., Lianos, P., “ Pure versus metal-ion-doped nanocrystalline titania for photocatalysis, ” Applied Catalysis B: Environmental 73, 51-59 (2007)
Brunet-Bruneau A, Fisson S., Gallas B., Vuye G. and Rivory J., “Optical properties of mixed TiO2 - SiO2 films, from infrared to ultraviolet, ” Part of
the EUROPTO Conference on Advances in Optical Interference Coattncjs
Berlin, Germany • May 1999 SPIE Vol. 3738 .
Burda, C., Lou,Y., Chen, X., Samia, A. C. S., Stout, J., Gole, J. L.,“ Enhanced nitrogen doping in TiO2 nanoparticles,” Nano Lett., 3, 1049-1051 (2003)
Chen, D., “ Anti-reflection (AR) coatings made by sol-gel processes: A review,” Solar Energy Materials & Solar Cells, 68, 313-336 (2001)
Coon, S. R., Zakharian, T. Y., Littlefield, N.L., Loheide, S.P., Puchkova, E. J., Freeney, R. M., Pak, V. N., “Reversible metachromasy of crystal violet
on titanium dioxide: A New Surface Photophysical Phenomenon,”Langmuir, 16, 9690-9693, (2000)
Dea´k, A., Sze´kely, I., Ka´lma´n,E., Keresztes, Zs., Kova´cs, A.L.,Ho´rvflgyi, Z., “ Nanostructured silica Langmuir–Blodgett films with antireflective properties prepared on glass substrates,” Thin Solid Films ,484, 310-317 (2005)
Decher, G., “ Fuzzy nanoassemblies : toward layered polymeric multicomposites ” , Science, 277, 1232-1237 (1997)
Decher,G. and Hong, J.D., “ Build up of ultrathin multilayer films by a self-assembly process : I. consecutive adsorption of anionic and cationic bipolar amphiphiles ” Markromol. Chem. Macromol. Symp., 46, 321
(1991a)
Decher,G. and Hong, J.D., “ Build up of ultrathin multilayer films by a self-assembly process : I. consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces ” Ber.Bunsen-Ges. Phys. Chem., 95 ,1430(1991b)
Fang, X., Zhang, Z., Chen, Q., “ Nitrogen doped TiO2 photocatalysts with visible-light activity,” Progress in Chemistry,19, 1282-1289 (2007)
Fujimoto, M., Ohno, T., Suzuki, H., Koyama, H., Tanaka, J., “Nanostructure of TiO2 nano-coated SiO2 particles,” J. Am. Ceram. Soc., 88, 3264-3266 (2005)
Fujishima, A. and Honda, K., “ Electrochemical photolysis of water at a semiconductor electrode ” , Nature 238, 37 (1972).
Fujishima, A. and Zhang, X., “ Titanium dioxide photocatalysis: present situation and future approaches,” A. R. Chimie 9, 750-760 (2006)
Fujishima, A., Rao, T.N., Tryk, D.A., “ Titanium dioxide photocatalysis,”Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1,1-21 (2000)
Guan, K., “ Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films ,” Surface & Coatings Technology,
191, 155-160 (2005)
Hashimoto, K., Irie, H., Fujishima, A., “ TiO2 Photocatalysis: A historical overview and future prospects,” Japanese Journal of Applied Physics 44,
8269-8285 (2005)
Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemannt, D.W.,“Environmental applications of semiconductor Photocatalysis,” Chem. Rev.,95, 69-96 (1995)
Ihara, T., Miyoshi, M., Iriyama, Y., Matsumoto, O., Sugihara, S.,“ Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Applied Catalysis B:
Environmental , 42, 403-409 (2003)
Iler, R.K., “ Multilayers of colloidal particles,” Journal of Colloid and Interface Science, 21, 569- (1966)
Irie, H., Washizuka, S., Watanabe, Y., Kako, T., Hashimoto, K., “ Photoinduced hydrophilic and electrochemical properties of nitrogendoped TiO2 films,” Journal of The Electrochemical Society, 152, 11, E351
-E356 (2005 )
Irie,H., Watanabe,Y., Hashimoto, K., “Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders,” J. Phys. Chem. B , 107, 5483-5486(2003)
Kavan, L., Stoto, T., and Grétzel, M., Fitzmaurice, D., Shklover, V., “Quantum size effects in nanocrystalline semiconducting TiO2 layers prepared by anodic oxidative hydrolysis of TiC13,” J. Phys. Chem.,97, 9493-9495( 1993)
Kim, J.H., Fujita, S., Shiratori, S., “ Design of a thin film for optical applications, consisting of high and low refractive index multilayers,fabricated by a layer-by-layer self-assembly method,” Colloids and Surfaces A: Physicochem. Eng. Aspects 284, 290-294 (2006 a)
Kim, J.H., Fujita, S., Shiratori, S., “ Fabrication and characterization of TiO2 thin film prepared by alayer-by-layer self-assembly method,” Thin Solid Films , 499, 83-89 (2006 b)
Lee, D., Omolade, D., Cohen, R.E., Rubner, M.F., “ pH-dependent structure and properties of TiO2/SiO2 nanoparticle multilayer thin films,” Chem. Mater., 19, 1427-1433 (2007)
Lee, D., Rubner, M.F., Cohen, R.E., “ All-nanoparticle thin-film coatings,”Nano Lette., 6, 2305-2312 (2006)
Lee, D.S. and Liu, T.K., “Preparation of TiO2 sol using TiCl4 as a precursor,” Journal of Sol-Gel Science and Technology 25, 121-136, (2002)
Lien, S.Y., Wuu, D.S., Yeh, W.C., Liu, J.C., “ Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Solar Energy Materials & Solar Cells, 90, 2710-2719(2006)
Liu, Z., Zhang, X., Nishimoto, S., Jin, M., Tryk, D.A., Murakami, T., Fujishima, A., “ Anatase TiO2 nanoparticles on rutile TiO2 nanorods: A Heterogeneous Nanostructure via Layer-by-Layer Assembly,”Langmuir,23, 10916-10919 (2007)
Manifacier, C., Gasiot, J., Fillard J.P., “A simple method for the determination of the optical constants n, h and the thickness of a weakly absorbing thin film,” Journal of Physics E: Scientific Instruments , 9, 1002
-1004(1976)
Mardare, D., Tasca, M., Delibas, M., Rusu, G.I., “On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films,”Applied Surface Science, 156, 200-206 (2000)
Mecleod, H.A., “ Thin-Film Optical Filters ” , 2nd edition , McGraw-Hill Publishing Company (1986)
Mills, A., and Wang, J., “ Photobleaching of methylene blue sensitised by TiO2: an ambiguous system?” Journal of Photochemistry and Photobiology A: Chemistry 127, 123-134 (1999)
Mitzi,D.B., “ Thin-film deposition of organic-inorganic hybrid materials,”Chem. Mater., 13, 3283-3298(2001)
Miyauchi, M., Ikezawa, A., Tobimatsu, H., Irie H., Hashimoto, K., “ Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films,”Phys.Chem.Chem.Phys. , 6, 865-870 (2004)
Nakamura, I., Negishi, N., Kutsuna, S., Ihara, T., Sugihara, S., Takeuchi, K.,“ Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” Journal of Molecular Catalysis A: Chemical, 161, 205-212 ( 2000 )
Nakamura, R., Tanaka, T., Nakato, Y., “ Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes,” J. Phys. Chem. B, 108, 10617-10620 (2004)
Park, S., DiMasi, E., Kim, Y.I., Han, W., Woodward, P.M., Vogt, T., “The preparation and characterization of photocatalytically active TiO2 thin films and nanoparticles using Successive-Ionic-Layer-Adsorption-and-Reaction,”Thin Solid Films 515, 1250-1254, (2006)
Parkin, I. P. and Palgrave, R. G. “ Self-cleaning coatings,” J. Mater. Chem., 15, 1689-1695 (2005)
Saha, N. C.and Tompkins, H. G. “Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study,” J. Appl. Phys., 72, 3072-3079 (1992)
Sato, S., “ Photocatalytic activity of NOx-doped TiO2 in the visible light region,” Chemical Physics Letters,123,126-128 (1986)
Spurr, R. A. and Myers, H. “Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer,” Analytic chemistry, 29, 760-762 (1957)
Stathatos, E., Lianos, P., Tsakiroglou, C.,Metachromatic effects and photodegradation of basic blue on nanocrystalline titania films,” Langmuir, 20, 9103-9107 (2004)
Surovtseva, N. I., Eremenko, A. M., Smirnova, N. P., Pokrovskii, V. A., Fesenko, T. V., Starukh G. N., “The effect of nanosized titania-silica film composition on the photostability of adsorbed methylene blue dye,”
Theoretical and Experimental Chemistry, 43, 235-240 (2007)
Tang, H., Prasad, K., Sanjinès, R., Schmid, P.E., Lévy, F., “electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys. 75, 2042-2047 (1994)
Tompkins H. G.and McGahan, W. A., “Spectroscopic ellipsometry and reflectometry: a user guide,” NewYork (1999)
Tsumura, T., Kojitani, N., Izumi, I., Iwashita, N., Toyoda, M., Inagaki, M., “Carbon coating of anatase-type TiO2 and photoactivity,” J. Mater. Chem., 12, 1391-1396 (2002)
Vardeny, Z. and Tauc, J., “Method for direct determination if the effective correlation energy of the defects in semiconductors: optical modulation spectroscopy of dangling bonds,” Physical Review Letters, 54, 1844-1847 (1985)
Wang, C.C. and Ying, J.Y., “ Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals,” Chem. Mater, 11, 3113-3120 (1999)
Wang, J., Zhu, W., Zhang, Y., Liu,S., “An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: visible-light-induced photodecomposition of methylene blue, ”J. Phys. Chem. C, 111, 1010-1014(2007)
Wang, R., Hashimoto, K., Fujishima, A., “ Light-induced amphiphilic surfaces,” Nature, 388, 431-432 (1997)
Wang, X. H., Li, J.G., Kamiyama, H., Katada, M., Ohashi, N., Moriyoshi, Y., Ishigaki, T., “Pyrogenic iron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and
magnetic properties,” J. Am. Chem. Soc.,127, 10982-10998 (2005)
Yan,X., Ohno, T., Nishijima, K., Abe, R., Ohtani, B., “Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania,” Chemical Physics Letters, 429, 606-610 (2006)
Zhang, X.T., Fujishima, A., Jin,M., Emeline, AV., Murakami, T.,“ Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties,” J. Phys. Chem. B 110, 25142-25148 (2006)
Zhang, X.T., Sato, O., Taguchi, M., Einaga, Y., Murakami, T., Fujishima, A., “ Self-cleaning particle coating with antireflection properties,” Chem. Mater., 17, 696-700 (2005)
Zhu, Y., Zhang, L., Gao, C., Cao, L., “The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor, ” Journal of Materials Science 35, 4049-4054 (2000)
土卞田博史,『光觸媒圖解』,商周出版 (2003)
王文裕,顧洋,『二氧化鈦可見光光觸媒的發展』,界面科學會 誌,第27 卷,第2 期,111-122 (2005)
王武敬,『光學機能性奈米高分子材料於平面顯示器抗反射光學 塗裝之應用』,化工資訊與商情 第33期,54-62(2006)
李正中,『薄膜光學與鍍膜技術』,藝軒圖書出版社 ( 2001)
林麗娟,『X 光繞射原理及其應用』,工業材料 86 期,100- 109 (1994)
唐謙仁,『漸變折射率光學薄膜之設計與製鍍』,國立中央大學 光電科學研究所碩士論文 (2002)
高濂,鄭珊,張青紅,『奈米光觸媒』,五南圖書出版,(2004)
郭建生,曾堯宣,黃嘉宏,黃珧玲,劉淑鈴,李元堯,『化學氣 相沉積法製備二氧化鈦薄膜之研究』,化工,第53卷, 第5期,20-27 (2006)
陳宏彬,『橢圓偏光儀之原理與應用』,儀科中心簡訊,80 期 ,12-13 (2007)
鄭智鴻,『量身訂做的二氧化鈦光觸媒之合成及應用』,成功大 學化工
系碩士論文(2006)