簡易檢索 / 詳目顯示

研究生: 劉永進
Liou, Yong-Jin
論文名稱: 染料敏化太陽能電池剛性及可繞二氧化鈦層之電泳成膜研究
Electrophoretic Deposition of Rigid and Flexible TiO2 Films for Dye-Sensitized Solar Cells
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 123
中文關鍵詞: 染料敏化太陽能電池電泳沉積二氧化鈦薄膜
外文關鍵詞: DSSCs, Electrophoretic deposition, TiO2 thin film
相關次數: 點閱:65下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用電泳法製備染料敏化太陽能電池中的TiO2薄膜光電極,其中包含多次的電泳沉積與乾糙。經過高溫鍛燒之後,跟傳統的TiO2漿料塗佈法比較之後,具有奈米顆粒緊密堆疊的特性。從X光吸收圖譜的分析結果指出,由電泳沉積而成的薄膜因為堆疊較緊密,顆粒間的界面較多,因此具有較高的缺陷。但是即便如此,當組裝成電池後,電泳法成膜的光電流應答與光電轉換效率分別高於傳統的漿料塗佈法有20%與15%之多。配合阻抗頻譜分析(IMPS、IMVS),結果顯示電泳法製備的薄膜具有較快的電子傳遞速度與電子生存時間。在1 sun與開環條件下進行交流阻抗頻譜分析,其結果指出電泳法製備的薄膜在厚度不超過13μm時,擁有高達95%的電子收集效率,反觀漿料塗佈法製備的薄膜,其電子收集效率都未滿90%。經過各項分析測試後,顯示電泳法成膜,因為堆疊緊密所以提供了較短的電子傳遞路徑,電子容易傳導至外電路,即使在高膜厚下,也有很高的電子收集效率。
    利用電泳法優異的特性以及具有使製程不需要使用到Binder的特點,將電泳法應用至低溫製程,製備可繞式塑膠光電極,與剛性玻璃相對電極組裝成電池後,其光電轉換效率亦可達到5%。

    An electrophoretic deposition (EPD) method, consisting of repetitive short-term depositions with intermediate drying, was developed to prepare nanocrystalline TiO2 films for dye-sensitized solar cells (DSSCs). After calcination, the EPD TiO2 films exhibited a more compact TiO2 network than films derived from the conventional paste-coating (PC) method. X-ray absorption fine structure spectroscopic analysis showed that the EPD films had a higher density of defect states than the PC films due to the higher number of interparticle necking regions created in the EPD films. However, the DSSCs assembled with the EPD films outperformed those with the PC films by 20% in photocurrent and 15% in solar energy conversion efficiency. Intensity-modulated photocurrent and photovoltage spectroscopic analyses showed that the EPD films had a shorter electron transit time and a longer lifetime than the PC films. Under one-sun illumination on the cells at open-circuit, impedance analysis showed that the EPD films had a constant charge collection efficiency of 95 % for thicknesses ranging from 4~13 μm, whereas the efficiency of the PC films was not greater than 90 % and showed a decreasing trend with increasing film thickness. The present study demonstrates that an optimized EPD process can construct a nanocrystalline TiO2 architecture with a minimized void fraction to shorten the electron travelling distance and to effectively collect photogenerated charges, even for films with large thicknesses.
    The EPD method has the outstanding character. And by using the advantage of the binder-free system, the EPD can serve as the low temperature process. To synthesis the plastic photo anode and assemble to dye-sensitized solar cells with the conducted glass as counter electrode, the cell performance can achieve to over 5%.

    中文摘要 I Abstract II 誌 謝 III 目 錄 IV 圖目錄 VIII 表目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 半導體簡介 2 1-3 太陽能電池 5 1-4 電泳沉積(Electrophoretic deposition) 5 1-5 研究動機與目的 7 第二章 文獻回顧與理論說明 9 2-1 光伏效應(Photovoltaic effect) 9 2-2 染料敏化太陽能電池 11 2-2.1 裝置構造 11 2-2.2 工作原理 12 2-3 奈米結晶多孔膜電極 15 2-4 染料敏化劑 (dye sensitizer) 18 2-5 電解質 (electrolyte) 21 2-6 相對電極 (counter electrode) 24 2-7電泳沉積(Electrophoretic deposition) 24 2-7.1電泳沉積之原理 24 2-7.2懸浮液種類 26 2-7.3 粒子電荷來源 27 2-7.4 膠體粒子之分散 27 2-7.5 電泳沉積於染料敏化太陽能電池之應用 29 第三章 實驗方法與儀器原理介紹 30 3-1 實驗藥品 30 3-2 實驗儀器設備 31 3-3 二氧化鈦奈米顆粒漿料與電泳液的製備與相關測試 32 3-3.1 水熱法合成二氧化鈦奈米顆粒 32 3-3.2 製做二氧化鈦奈米顆粒漿料 32 3-3.3製做二氧化鈦奈米顆粒電泳液 33 3-3.4 XRD 繞射分析 35 3-3.5 BET 和BJH 分析 37 3-3.6 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 40 3-4 組裝染料敏化太陽能電池 41 3-4.1 Paste-coating法製備TiO2薄膜電極 41 3-4.2 Electrophoretic Deposition法製備TiO2薄膜電極 41 3-4.3 可繞式塑膠光電極的製備 42 3-4.4 染料敏化劑的吸附 43 3-4.5 電解質的配製 44 3-4.6 相對電極的製備 44 3-4.7 組裝染料敏化太陽能電池 44 3-5 電池的電性測試 46 3-5.1 I-V特性曲線的測試 46 3-5.2 IMPS 與IMVS 的測量 48 3-5.3 Electrochemical Impedance Spectroscopy (EIS) 51 3-6 X光吸收光譜(XAS)實驗 53 3-6.1 同步幅射光源 53 3-6.2 X光吸收近邊緣結構(XANES) 56 3-6.3延伸X光吸收精細結構(EXAFS) 57 第四章 結果與討論 61 4-1 電泳法製備剛性薄膜光電極的優越性 61 4-1.1 前言 61 4-1.2 XRD分析 62 4-1.3 TiO2層成膜後SEM分析 64 4-1.4 氮氣吸脫附結果分析 66 4-1.5 PC法與EPD法成膜後於X光吸收光譜的差異 68 4-1.6 電池效率表現 74 4-1.7 染料吸附量比較 77 4-1.8 IMPS分析 79 4-1.9 IMVS分析 88 4-1.10 交流阻抗頻譜 (EIS)分析 91 4-2 可繞式塑膠基板 98 4-2.1 前言 98 4-2.2 塑膠光電極薄膜製備條件測試 99 4-2.3 壓力處理前後的比較 101 4-2.4 高膜厚的EIS結果討論 104 4-2.5 以商業化P25為TiO2原料 106 4-2.6 壓力處理前後之比較 106 4-2.7 不同膜厚的比較 110 第五章 結論與建議 113 5-1 PC法與EPD法在剛性導電基板上製備光電極之特性比較 113 5-2 可繞式塑膠基板電池 113 5-3 建議 114 第六章 參考文獻 115 作者自述 123

    1. B. O’Regan, M.Grätzel, “A low-coat, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353, 737.
    2. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, “Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%”, Jpn. J. Appl. Phys., 2006, 45, 25, L638.
    3. C. Y. Chen, M. K. Wang, J. Y. Li , N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin, M. Gratzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”, ACS nano, 2009, 3, 3103.
    4. M.Grätzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338.
    5. F.F. Reuss, Mém. Soc. Impériale Naturalistes de Moscow 2, 1809, p. 327.
    6. I. Zhitomirsky, “Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects”, Adv. Colloid Interface Sci., 2002, 97, 279.
    7. D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 2000, 104, 2053.
    8. D. Matthews, P. Infelta, M. Grätzel, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 1996, 44, 119.
    9. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A, 2004, 164, 3.
    10. A. Hagfeldt, M. Grätzel, “Light-Induced Redox Reactions in Nanocrystalline Systems”, Chem. Rev., 1995, 95, 49.
    11. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”, J. Am. Ceram. Soc., 1997, 80, 3157.
    12. K. Kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complex in photonic and optoelectronic devices”, Coord. Chem. rev., 1998, 177, 34.
    13. N.-G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, J. Phys. Chem. B, 2000, 104, 8989.
    14. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel,“Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge- Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc., 1993, 115, 6382.
    15. G. P. Smestad, M. Grätzel, “Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter”, J. Chem. Educ., 1998, 75, 752.
    16. M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells”, J. Am. Chem. Soc., 2001, 123, 1613.
    17. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers”, J. Am. Chem. Soc., 2005, 127, 16835.
    18. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 2003, 107, 8981.
    19. G. J. Meyer, “Efficient Light to Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers”, J. Chem. Educ., 1997, 74, 652.
    20. S. Cherian, C. C. Wamser, “Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2”, J. Phys. Chem. B, 2000, 104, 3624.
    21. http://www.solaronix.com/
    22. S. Y. Huang, G. Schlichthorl, A.J. Nozik, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 1997, 101, 2576.
    23. A. Hauch, R. Kern, J. Ferber, 2nd World Conference, Vienna, European Communities, 1998.
    24. N. Papageorgiou, M. Grätzel, P. P. Infelta, “On the Relevance of Mass Transport in Thin Layer Nanocrystalline Photoelectrochemical Solar Cells”, Sol. Energy Mater. Sol. Cells, 1996, 44(4), 405.
    25. U. Bach, D. Lupo, P. Comte, “Solid-State Dye Sensitized Mesoporous TiO2 Solar Cells with High Photo-to-electron Conversion Efficiencies”, Nature, 1998, 395, 583.
    26. P. Wang, S. M. Zakeeruddin, I. Exnarb, M. Grätzel, “High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte”, Chem. Commun., 2002, 2972.
    27. E. Stathatos, P. Lianos, “A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol-Gel Nanocomposite Electrolyte Containing Ionic Liquid”, Chem. Mater., 2003, 15, 1825.
    28. N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media”, J. Electrochem. Soc., 1996, 144, 99.
    29. A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 1996, 44, 99.
    30. K. Kamada, K. Maehara, M. Mukai, S. Ida, Y. Matsumoto, “Fabrication of metal oxide-diamond composite films by electrophoretic deposition and anodic dissolution”, J. Mater. Res. 2003, 18, 2826.
    31. A. Formento, L. Montanaro, and M. V. Swain, “Micromechanical Characterization of Electrophoretic-Deposited Green Films”, J. Am. Ceram. Soc., 1999, 82, 3521.
    32. O. O. Van der Biest, and L. J. Vandeperre, “Electrophoretic Deposition of Materials”, Annu. Rev. Mater. Sci., 1999, 29, 327.
    33. J. A. Lewis, “Colloidal Processing of Ceramics”, J. Am. Ceram. Soc., 2000, 83, 2341.
    34. D. Matthews, A. Kay, M. Grätzel, “Electrophoretically Deposited Titanium-Dioxide Thin-Films for Photovoltaic Cells”, Aust. J. Chem., 1994, 47, 1869.
    35. K. Fujimura, S. Yoshikado, “Preparation of TiO2 Thin Film for Dye Sensitized Solar Cell Deposited by Electrophoresis Method”, Key Eng. Mater., 2003, 248, 133.
    36. I. Zhitomirsky, “Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects”, Adv. Colloid Interface Sci., 2002, 97, 279.
    37. J. Tabellion, R. Clasen, “Electrophoretic deposition from aqueous suspensions for near-shape manufacturing of advanced ceramics and glasses—applications”, J. Mater. Sci., 2004, 39, 803.
    38. T. Miyasaka, Y. Kijitori, T. N. Murakami, M. Kimura, S. Uegusa, “Efficient Nonsintering Type Dye-sensitized Photocells Based on Electrophoretically Deposited TiO2 layers”, Chem. Lett., 2002, 1250.
    39. T. N. Murakami, Y. Kijitori, N. Kawashima, T. Miyasaka, “UV Light-assisted Chemical Vapor Deposition of TiO2 for Efficiency Development at Dye-sensitized Mesoporous Layers on Plastic Film Electrodes”, Chem. Lett., 2003, 32, 1076.
    40. L. Grinis, S. Dor, A. Ofir, A. Zaban, “Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells”, J. Photochem. Photobiol. A, 2008, 198, 52.
    41. T. Miyasaka, Y. Kijitori, “Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers”, J. Electrochem. Soc., 2004, 151(11), A1767.
    42. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 1998, 14, 3160.
    43. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., 1999, 11, 1307.
    44. B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction”, 3rd ed., Prentice, (2001).
    45. C. Kittel, “Introduction to Solid State Physics”, Wiley, 4th ed., (1971).
    46. M. Yan, F. Chen, J. Zhang, M. Anpo, “Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties”, J. Phys. Chem. B, 2005, 109, 8673.
    47. S. Brunaller, P. H. Emmett, E. Teller, “Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc., 1938, 60, 390.
    48. E. P. Barrett, L. G. Joyner, P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances”, J. Am. Chem. Soc., 1951, 73, 373.
    49. M. Kruk, M. Jaroniec, R. Ryoo, S. H. Joo, “Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates”, J. Phys. Chem. B, 2000, 104, 7960.
    50. J. Kru1ger, R. Plass, M. Grätzel, P. J. Cameron, L. M. Peter, “Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells: A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy”, J. Phys. Chem. B, 2003, 107, 7536.
    51. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions”, Electrochim. Atca, 2002, 47, 4213.
    52. F. Febregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, M. Grätzel, “Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids”, J. Phys. Chem. C, 2007, 111, 6550.
    53. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy”, J. Phys. Chem. B, 2006, 110 , 13872.
    54. K. B. Teo, “EXAFS: Basic Principle and Data Analysis”, Springer-Verlag, New York, (1998).
    55. D. C. Koningsberger, R. Prins, “X-Ray Absorption: Principles, Application, Techniques of EXAFS, SEXAFS, and XANES”, John Wiley, New York, (1988).
    56. 朱彥宇, “染料敏化太陽能電池二氧化鈦薄膜的電泳製備研究”, 國立成功大學化學工程研究所碩士論文, (2010).
    57. C. C. Tsai, H. Teng, “Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments”, Chem. Mater., 2006, 18, 367.
    58. F. Farges, “Fivefold-coordinated Ti4+ in metamict zirconolite and titanite: A new occurrence shown by Ti K-edge XANES spectroscopy”, Am, Mineral., 1997, 82, 44.
    59. F. Farges, G. E. Brown Jr, J. J. Rehr, “Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment”, Phys. Rev. B, 1997, 56, 1809.
    60. F. Farges, G. E. Brown Jr, J. J. Rehr, “Coordination chemistry of Ti(IV) in silicate glasses and melts. 1. XAFS study of titanium coordination in oxide model compounds”, Geochim. Acta., 1996, 60, 3023.
    61. Z. Y. Wu, G. Ouvrard, P. Gressier, C. R. Natoli, “Ti and O K edges for titanium oxides by multiple scattering calculations: Comparison to XAS and EELS spectra”, Phys. Rev. B, 1997, 55, 10382.
    62. B. Pillep, M. Fröba, M. L. F. Phillips, J. Wong, G. D. Stucky, P. Behrens, “XANES spectroscopic study of the electronic structure of Ti in KTiOPO4 and some of its isomorphous compounds”, Solid State Commum. 1997, 103, 203.
    63. D. M. Pickup, E. A. A. Neel, R. M. Moss, K. M. Wetherall, P. Guerry, M. E. Smith, J. C. Knowles, R. J. Newport, “Ti K-edge XANES study of the local environment of titanium in bioresorbable TiO2-CaO-Na2O-P2O5 glasses”, J. Mater. Sci.:Mater. Med., 2008, 19, 1681.
    64. Satterfield, C. N. Heterogeneous catalysis in practice; McGraw-Hill Inc., US, 1980.
    65. P. T. Hsiao, Y. L. Tung, H. Teng, “Electron Transport Patterns in TiO2 Nanocrystalline Films of Dye-Sensitized Solar Cells”, J. Phys. Chem. C, 2010, 114, 6762.
    66. N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B, 2003, 107, 11307.
    67. L. M. Peter, “Characterization and modeling of dye-sensitized solar cells”, J. Phys. Chem. C, 2007, 111, 6601.
    68. Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, “Characteristics of High Efficiency Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 2006, 110, 25210.
    69. K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, A. J. Frank, “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells”, J. Phys. Chem. B, 2003, 107, 7759.
    70. A. J. Frank, N. Kopidakis, J. van de Lagemaat, “Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties”, Coord. Chem. Rev., 2004, 248, 1165.

    下載圖示 校內:2013-08-04公開
    校外:2013-08-04公開
    QR CODE