簡易檢索 / 詳目顯示

研究生: 徐蕾
Xu, Lei
論文名稱: 全光控偶氮苯液晶聚合物穩定膽固醇液晶特性之研究
Studies of the characteristics of all optically controllable azobenzene liquid crystalline polymer-stabilized cholesteric texture
指導教授: 傅永貴
Fuh, Y.G. Andy
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 92
中文關鍵詞: 偶氮苯液晶聚合物等溫相變溶解度
外文關鍵詞: azobenzene liquid crystalline polymer, isothermal phase transition, solubility
相關次數: 點閱:86下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚合物穩定膽固醇液晶結構 (Polymer-stabilized Cholesteric Texture,簡稱PSCT),以聚合物枝條穩定膽固醇液晶之排列,通過外加電場、光源 (light source) 實現樣品的穿透和散射。
    在本研究中,以偶氮苯液晶聚合物 (Azobenzene Liquid crystalline polymer) 取代傳統聚合物材料穩定膽固醇液晶結構,實現在膽固醇液晶的焦錐結構 (focal conic texture)、各向同性態 (isotropic state) 及平面結構 (planar texture) 間的全光控切換。這三種結構可以利用在兩種切換模式上,分別為膽固醇焦錐結構和各向同性態間之可逆切換,及膽固醇焦錐結構和平面結構間之可逆切換,切換對比度皆可以達80:1。
    光切換的原理是利用偶氮苯分子經由光照後由長棒狀的trans-態轉變為彎曲狀的cis-態并擾亂液晶排列使其秩序參數下降,從而使其相變溫度降低,當液晶混合物中cis-態濃度超過一臨界值時,液晶就會發生等溫相變。同時我們也驗證了偶氮苯液晶聚合物處於cis-態時在液晶中的溶解度會有明顯提高。因此分別利用聚合物在trans-態時的網狀結構、等溫相變的特性以及在偶氮苯液晶聚合物cis-態結構在液晶中之高溶解度,形成膽固醇液晶的焦錐結構、平面結構及各向同性態,達成全光控及快速反應。

    Azobenzene can be made to transit between trans- and cis- state photochemically. The chemical structures of the former and the latter are rode- and bend- shape, respectively. Being doped in a liquid crystal (LC) cell, the trans-cis isomerization can, thus, decrease the LC order due to bend structure of the cis-isomers, and lower the nematic-to-isotropic phase transition temperature. Notably, once the cis-isomers reach a critical concentration, a nematic LC can be isothermally transited to the isotropic state. We also verify that the cis-isomer of azobenzene liquid crystalline polymer performs a high solubility in the LCs. These features motivated us to use the azobenzene liquid crystalline polymer instead of a traditional polymer to achieve all-optically controllable switching among the focal conic texture, planar texture and isotropic state in a cholesteric LC cell. These three stable textures can be used to achieve two switching modes between the transparent and scattering states. One is the reversible switching between isotropic state and focal conic texture, and the other is the reversible switching between the planar texture and focal conic texture. Both modes display high contrast ratio (80:1). Moreover, the switching is fast, with a timescale ranging from milliseconds to seconds.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 第一章 緒論 1 §1-1 前言 1 §1-2 論文結構 2 第二章 液晶簡介 3 §2-1 液晶 (Liquid Crystals) 的發現 3 §2-2液晶的介紹 3 §2-3液晶的分類 5 (I) 熱致型液晶 (Thermotropic LCs) 5 (II) 溶致型液晶 (Lyotropic LCs) 5 §2-4液晶聚合物 (Liquid crystalline polymer) 17 第三章 液晶的物理特性 20 §3-1液晶分子指向秩序參數 (Orientation Order Parameter) 20 §3-2物理異向性 (Anisotropy) 21 3-2-1折射率橢圓球 (Index Ellipsoid) 21 3-2-2介電係數異向性 (Dielectric Anisotropy) 24 3-2-3溫度對液晶折射率的影響 26 3-2-4外加電場引致液晶的光電現象 27 §3-3液晶的連續彈性體理論 29 第四章 PSCT (Polymer-stabilized Cholesteric Textures) 簡介 32 §4-1外加電場對膽固醇液晶特性的影響 32 §4-2 PSCT元件的分類 33 第五章 實驗相關理論 39 §5-1光引致液晶分子轉向效應 39 5-1-1光引致液晶分子轉向效應 39 5-1-2光致熱效應 (Light-induced Thermal Effect) 41 §5-2溝槽理論 43 §5-3聚合反應過程 44 §5-4米氏散射理論 (Mie scattering theory) 47 第六章 實驗材料、方法與流程 50 §6-1樣品配置 50 6-1-1材料介紹 50 6-1-2樣品製作 54 §6-2實驗架設 56 6-2-1樣品照射UV光之光路架設 56 6-2-2樣品照射綠光雷射之光路架設 57 6-2-3量測樣品穿透頻譜之光路架設 58 6-2-4量測樣品穿透率之光路架設 58 6-2-5量測樣品各態間切換的上升及下降時間之光路架設 59 6-2-6使用高解析場發射掃描式電子顯微鏡 (JEM 6700) 觀測樣品內部結構 59 第七章 實驗結果討論與分析 61 §7-1選定最佳化樣品參數 61 7-1-1液晶材料的選擇 61 7-1-2偶氮苯聚合物重量百分比濃度的選擇 61 7-1-3驗證液晶混合物HTP值 62 §7-2摻雜偶氮苯液晶聚合物之膽固醇液晶三態形成機制之研究 65 7-2-1 利用偶氮苯液晶形成膽固醇液晶焦錐結構 65 7-2-2 利用光致同分異構化效應實現膽固醇液晶的等溫相變 69 7-2-3 利用偶氮苯液晶聚合物溶解度特性實現膽固醇液晶平面結構 73 §7-3利用膽固醇液晶之三態實現散射態和穿透態的切換 80 7-3-1 焦錐結構和各向同性態之可逆切換 81 7-3-2 焦錐結構和平面結構之可逆切換 85 第八章 結論與未來之展望 88 §8-1結論 88 §8-2未來展望 89 參考文獻 (References) 91

    [1] Gregory Philip Crawford and Slobodan Žumer, "Liquid Crystals in Complex Geometries-Formed by polymer and porous networks" (CRC Press, 1996).
    [2] H. Finkelmann, E. Nishikawa, G. G. Pereira and M. Warner, Phys. Rev. Lett. 87, 015501 (2001).
    [3] M.-H. Li, P. Keller, B. Li, X. Wang and M. Brunet, Adv. Mater. 15, 569-572 (2003).
    [4] M. Warner and E. Terentjev, Macromol. Symp. 200, 81-92 (2003).
    [5] Y. L. Yu, M. Nakano and T. Ikeda, Nature 425, 145 (2003).
    [6] M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray and M. Shelley, Nat. Mater. 3, 307-310 (2004).
    [7] C. Ohm, M. Brehmer and R. Zentel, Adv. Mater. 22, 3366-3387 (2010).
    [8] Paul S. Drzaic, J. Appl. Phys. 60, 2142 (1986).
    [9] A. Y. -G. Fuh, C. -Y. Huang, B. -W. Tzen, Jpn. J. Appl. Phys., part l 33, 1088 (1994).
    [10] Tong X, Wang G, Yavrian A, Galstian T, Zhao Y., Adv Mater 17, 370-374 (2005b).
    [11] H. Kikuchi,Yokota M., Y. Hisakado, H. Yang and T. Kajiyama, Nature Materials 1, 64 (2002).
    [12] 謝毓章,《液晶物理學》,第一版,科學出版社,1988。
    [13] Pochi Yeh, and Claire Gu, "Optics of Liquid Crystal Displays" (Wiley, 1999).
    [14] S. Chandrasekhar, "Liquid Crystals", 2th ed. (Cambridge University Press, 1992).
    [15] P. G. de Gebbes and J. Prost, "The Physics of Liquid Crystals", 2th ed. (Oxford University Press, 1993).
    [16] Heinz-Siegfried Kitzerow, Christian Bahr, and Christian Bahr, "Chirality in Liquid Crystals" (Springer, 2001).
    [17] A. Yariv, "Optical Electronics in Modern Communications" (Oxford University Press, 1997).
    [18] A. Yariv, "Quantum Electroics" (Wiley, 1988).
    [19] S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, Pramana 9, 471-480 (1977).
    [20] W. Helfrich, C. S. Ho, Mol. Cryst. Liq. Cryst. 14, 289 (1971)
    [21] Deng-Ke Yang and Shin-Tson Wu, "Fundamentals of Liquid Crystal Devices” (Wiley, 2006).
    [22] M. Marinelli and F. Mercuri, Phys. Rev. E 61, 1616-1621 (2000).
    [23] Peter J. Collings and Michael Hird, "Introduction to Liquid Crystals Chemistry and Physics" (2001)
    [24] R. Hochgesand, H. J. Plach, and I. C. Sage, technical report by E. Merck and BDH Chemicals Ltd. (1989).
    [25] C. W. Oseen, Trant. Faraday Soc. 29, 883 (1933).
    [26] F. C. Frank, Disc. Faraday Soc. 25, 19 (1958).
    [27] Jun Geng, Chen Dong, Lipei Zhang, Zheng Ma, Lin Shi, Appl. Phys. Lett. 89, 081130 (2006).
    [28] W. M. Gibbons, P. J. Shannon, S. T. Sun and B. J. Swetlin, Nature 351, 49 (1991).
    [29] H. K. Lee, A. Kanazawa, T. Shiono and T. Ikeda, Chem. Mater. 10, 5 (1998).
    [30] Mita I, Horie K, Hirao K, Photochemistry in polymer solids. 9. Macromolecules 22, 558-563 (1989).
    [31] Yue Zhao, Tomiki Ikeda, "Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals" (Wiley, 2009).
    [32] Lednev IK, Ye T-Q, Hester RE, Moore JN, J Phys Chem 100, 13338-13341 (1996).
    [33] Rottger D, Rau H, J Photochem Photobiol A Chem 101, 205-214 (1996).
    [34] A. G. Chen and D. J. Brady, Opt. Lett. 17, 441 (1992).
    [35] T. V. Gastyan, V. Drnoyan and S.M. Arakelian, Phys. Lett. A 217, 52 (1996).
    [36] Kato T, Hirota N, Fujishima A, Frechet JMJ, J Polym Sci, Part A 34, 7-62 (1996).
    [37] Hayashi T, Eur Polym J 31, 23-28 (1995).
    [38] Ikeda T, Tsutsumi O, Science 268, 1873-1875 (1995).
    [39] Berreman D W, Phys. Rev. Lett. 28, 1683 (1972).
    [40] Paul S. Drzaic, "Liquid crystal dispersions" (World Scientific Singapore, 1995).
    [41] M. Kerker, "The Scattering of Light and Other Electromagnetic Radiation" (Academic Press, 1969).
    [42] H. C. Van de Hulst, "Light Scattering by Small Particles" (Dover Publications, 1957).
    [43] CB 15, http://www.thsci.com/97730-31-9.html
    [44] Svetlana Serak, Nelson Tabiryan, Rafael Vergara, Timothy J. White, Richard A. Vaia and Timothy J. Bunning, Soft Matter 6, 779-783 (2010).

    無法下載圖示 校內:2018-07-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE