簡易檢索 / 詳目顯示

研究生: 吳晊煾
Wu, Chih-En
論文名稱: 利用流體化床進行咖啡渣與蓖麻粕共熱裂解研究
Co-pyrolysis of Spent Coffee Grounds and Castor Waste in a Fluidized Bed Reactor
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 273
中文關鍵詞: 咖啡渣蓖麻粕組合動力學流體化床快速共熱裂解Taguchi 法
外文關鍵詞: Spent Coffee Grounds (SCG), Castor Waste (CW), Bubbling Fluidized-Bed Reactor, modified Šesták & Berggren model, Taguchi Method
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在2023年,台灣的咖啡渣產量已達3.384萬公噸;同時,台灣進口蓖麻粕達1.1萬公噸,若將兩者進行共裂解,不但可開創新的咖啡渣再利用途徑,也可拓展蓖麻粕的再利用價值。在本次研究,創新地結合國內生產的咖啡渣(SCG)和國外進口的蓖麻粕(CW),進行流體化床的快速共熱裂解的研究。
    在化學反應動力學方面,首度提出一套集成多模型的組合動力學分析策略,結合等轉換率法、主圖法、改良Šesták & Berggren模型與全域優化演算法,以克服單一傳統方法在異質生質物熱裂解機制刻畫上的不足。結果顯示,Coats & Redfern法僅能提供粗略活化能範圍,且忽略不同階段的機制變化;等轉換法搭配主圖法只能在既有經典模型範疇內進行對比,無法揭示生質物中未包含的隱蔽或複合反應機制。相較之下,本研究透過基因演算法進行全域搜尋,對Šesták & Berggren模型的m、n與p參數進行擬合,成功在不同升溫速率(10~30°C/min)與混摻比條件下,擬合出實驗曲線並量化五大機制(擴散、冪次、階數、幾何收縮、成核)的耦合作用。研究發現,純SCG與純CW在中等速率區間內動力學行為高度一致,而混摻樣品則隨CW含量提升,展現從階數(Fn)主導轉向擴散(Dn)與成核機制(An)主導;BR:80%樣品尤具最強降活化能與反應促進效果。
    此外,本研究利用20kWth級鼓泡式流體化床進行共熱裂解實驗,將通過Taguchi法設計與S/N分析,決定最大液態產率(wt.%)與最佳吲哚產率(Area%)的製程參數:先以最大液態產率為例,在熱解溫度400°C、混摻比BR:80wt.%、N₂流量10 SLPM、冷凝溫度-5°C條件下,理論S/N = 27.48 dB、液產率23.66wt.%,與實驗值23.33wt.%誤差僅1.39%,彰顯Taguchi法在多因子優化中之精準度;再以最佳吲哚產率為例,在熱解溫度450°C、混摻比BR:80wt.%、N₂流量10 SLPM、冷凝溫度0°C時,吲哚產率達最佳,理論S/N = 40.42 dB,預測選擇性近100 Area%,顯示低流量與適當冷凝溫度對蛋白質前驅體(例如:色胺酸)裂解生成含氮雜環,具有決定性影響。此優化策略提高液態產率與高價值化學品的生產效率。

    In 2023, Taiwan produced approximately 33,840 t of spent coffee grounds (SCG) and imported around 11,000 t of castor waste (CW). This study combines domestically produced SCG and imported CW to conduct research on rapid co-pyrolysis in a 20 kWth bubbling fluidized bed.
    For the first time, we propose an integrated multi model kinetic analysis strategy that combines isoconversional methods, master‐plot techniques, a modified Šesták & Berggren model, and a global optimization algorithm. Under different heating rates (10~30°C/min) and blend ratios, this approach successfully fits experimental thermogravimetric curves and quantifies the coupled contributions of five principal mechanisms (diffusion, power law, reaction order, geometric contraction, and nucleation). We find that pure SCG and pure CW exhibit highly consistent kinetic behavior at moderate heating rates, whereas increasing CW content in the blends shifts the dominant mechanism from reaction order (Fₙ) toward diffusion (Dₙ) and nucleation (Aₙ). Notably, the 80 wt.% CW blend shows the greatest reduction in activation energy and the most pronounced reaction enhancement.
    In addition, we optimize both maximum liquid yield (wt.%) and indole yield (100 Area%) using a Taguchi method and signal to noise (S/N) analysis. For maximum liquid yield, at 400 °C, BR = 80 wt.%, N₂ flow = 10 SLPM, and condenser temperature = −5 °C, the predicted S/N ratio is 27.48 dB and the theoretical liquid yield is 23.66 wt.%, which agrees with the measured value of 23.33 wt.% (error = 1.39 %). For optimal indole yield, at 450 °C, BR = 80 wt.%, N₂ flow = 10 SLPM, and condenser temperature = 0 °C, the predicted S/N ratio is 40.42 dB, with a selectivity approaching 100 Area%.

    摘要 i Extended Abstract iii 誌謝 xiii 目錄 xv 表目錄 xix 圖目錄 xxi 符號 xxiv 第一章 緒論 1 1.1 氣候環境與能源概況 1 1.2 生質物與生質能 9 1.3 生質物熱裂解 15 1.4 催化熱裂解 19 1.5 咖啡渣 22 1.6 蓖麻粕 25 1.7 生質物生產含氮化合物 27 1.8 研究動機與目的 32 第二章 實驗方法與設備 33 2.1 實驗原料 33 2.2 實驗設備與分析設備 36 2.2.1 流化床介紹 36 2.2.2 流化床的主體設備 40 2.2.3 流化床設計參數 46 2.2.4 流體化床系統與熱裂解操作流程 54 2.2.5 實驗分析儀器 55 2.3 田口方法(Taguchi Methods) 62 2.3.1 田口參數設定與範圍 66 第三章 化學反應動力學及熱力分析方法 72 3.1 生質物熱裂解動力學模型研究 72 3.2 化學反應動力學 78 3.2.1 模型擬合方法 83 3.2.2 等轉化率方法搭配主圖方法 86 3.2.3 組合動力學方法 90 3.3 協同效應(synergistic effects) 94 第四章 燃料性質與熱重分析 97 4.1 元素分析和近似分析 97 4.2 熱重分析結果 99 4.3 反應動力學模型評估 108 4.3.1 傳統方法獲得活化能與反應模型 108 4.3.2 組合動力學確認活化能與反應模型 120 4.4 協同效應結果 128 第五章 流化床的實驗結果 136 5.1 田口實驗結果 137 5.1.1 熱解液態產物中主要有機化合物群 137 5.1.2 液態產物中主要裂解產物 145 5.2 實驗參數最佳化分析 155 5.2.1 最佳液態產率(wt.%)之操作參數 155 5.2.2 最佳Indole產率(Area%)之操作參數 158 5.3 觸媒催化效應探討 164 5.3.1 最佳液態產率實驗之催化共熱裂解 165 第六章 結論 172 參考文獻 177 附錄一 193 附錄二 202 A流化床反應爐設計 202 A.1基本參數的確定 203 A.2進料量計算 205 A.3顆粒的分類 206 A.4反應爐設計思路 209 B流化床反應器內各種速度計算 210 B.1臨界流化速度umf公式推導 210 B.2計算臨界流化速度umf 214 B.3終端速度ut(Terminal velocity) 216 B.4操作流速(表觀流速)u和流化數N 219 C反應爐高度計算 220 C.1臨界流化速度下的床層高度Hmf 222 C.2初始空隙率ε0(Voidage)和膨脹率R(Expand ratio) 225 C.3膨脹床高Hf(密向段) 227 C.4流化床輸送分離高度(TDH) 230 D流化床反應器高度的修正 233 E計算氣相停滯時間(residue time) 234 F選擇佈風板 235 G決定進料口位置 236 H其餘配置 238 I 工程視圖 242

    [1] UN Climate Talks, in.
    [2] L. Maizland, Global Climate Agreements: Successes and Failures, in: International efforts, such as the Paris Agreement, aim to reduce greenhouse gas emissions. But experts say countries aren’t doing enough to limit dangerous global warming.
    [3] 氣候變遷科學資訊, COP28 氣候變遷大會資訊簡介, in, 台灣科技媒體中心, 2023.
    [4] 認識淨零排放, in, 2050淨零碳排經技部MDEA.
    [5] 減碳從自身做起-由承諾轉向實踐,攜手共同減碳, in: Together for implementation, 2050淨零碳排經技部MDEA.
    [6] I.E. Agency, The World Energy Outlook, in, International Energy Agency, 2024, pp. 335.
    [7] J.R. Hoesung Lee, CLIMATE CHANGE 2023 Synthesis Report, in, 2024.
    [8] IRENA, World Energy Transitions Outlook 2023: 1.5°C Pathway,, in, 2023.
    [9] IRENA, Renewable energy statistics 2024, in: This statistical publication presents renewable energy statistics for the last decade (2013-2023), 2024, pp. 4.
    [10] 經濟部能源署, 中華民國112年能源統計手冊, in, 經濟部能源署, 0492臺北市復興北路2號13樓, June 2024.
    [11] K. Bracmort, R.W. Gorte, Biomass: comparison of definitions in legislation, in, Congressional Research Service, Library of Congress, 2009.
    [12] H.A. Alalwan, A.H. Alminshid, H.A.S. Aljaafari, Promising evolution of biofuel generations. Subject review, Renewable Energy Focus, 28 (2019) 127-139.
    [13] A. Hirani, N. Javed, M. Asif, S. Basu, A. Kumar, S. Ogita, Y. Yau, Biofuels: Greenhouse Gas Mitigation and Global Warming, Part of Springer Nature, (2018) 141-154.
    [14] N.S. Mat Aron, K.S. Khoo, K.W. Chew, P.L. Show, W.-H. Chen, T.H.P. Nguyen, Sustainability of the four generations of biofuels – A review, International Journal of Energy Research, 44 (2020) 9266-9282.
    [15] P.K. Sarangi, S. Nanda, P. Mohanty, Recent advancements in biofuels and bioenergy utilization, Springer, 2018.
    [16] P. Basu, Biomass gasification, pyrolysis and torrefaction: practical design and theory, Academic press, 2018.
    [17] M.S. Mettler, D.G. Vlachos, P.J. Dauenhauer, Top ten fundamental challenges of biomass pyrolysis for biofuels, Energy & Environmental Science, 5 (2012) 7797-7809.
    [18] S. Zhong, B. Zhang, C. Liu, A. Shujaa aldeen, S. Mwenya, H. Zhang, A minireview on catalytic fast co-pyrolysis of lignocellulosic biomass for bio-oil upgrading via enhancing monocyclic aromatics, Journal of Analytical and Applied Pyrolysis, 164 (2022) 105544.
    [19] D.K. Shen, S. Gu, The mechanism for thermal decomposition of cellulose and its main products, Bioresource Technology, 100 (2009) 6496-6504.
    [20] B.B. Uzun, A.E. Pütün, E. Pütün, Fast pyrolysis of soybean cake: Product yields and compositions, Bioresource Technology, 97 (2006) 569-576.
    [21] E. Salehi, J. Abedi, T. Harding, Bio-oil from sawdust: pyrolysis of sawdust in a fixed-bed system, Energy & Fuels, 23 (2009) 3767-3772.
    [22] N. Ozbay, A.E. Pütün, E. Pütün, Bio‐oil production from rapid pyrolysis of cottonseed cake: product yields and compositions, International journal of energy research, 30 (2006) 501-510.
    [23] V. Seebauer, J. Petek, G. Staudinger, Effects of particle size, heating rate and pressure on measurement of pyrolysis kinetics by thermogravimetric analysis, Fuel, 76 (1997) 1277-1282.
    [24] X. Zhang, X. Qi, S. Gao, X. Li, Z. Zhu, Q. Lyu, An experimental investigation on gasification-pyrolysis coupling characteristics of pulverized coal in circulating fluidized bed, Journal of the Energy Institute, 116 (2024) 101751.
    [25] F. Caiardi, J.-P. Belaud, C. Vialle, F. Monlau, S. Tayibi, A. Barakat, A. Oukarroum, Y. Zeroual, C. Sablayrolles, Waste-to-energy innovative system: Assessment of integrating anaerobic digestion and pyrolysis technologies, Sustainable Production and Consumption, 31 (2022) 657-669.
    [26] B. Qiu, Y. Wang, D. Zhang, H. Chu, Microwave-assisted pyrolysis of biomass to high-value products: Factors assessment, mechanism analysis, and critical issues proposal, Chemical Engineering Journal, 498 (2024) 155362.
    [27] H. Rezaei, S. Sokhansanj, X. Bi, C.J. Lim, A. Lau, A numerical and experimental study on fast pyrolysis of single woody biomass particles, Applied Energy, 198 (2017) 320-331.
    [28] A. Nanduri, S.S. Kulkarni, P.L. Mills, Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review, Renewable and Sustainable Energy Reviews, 148 (2021) 111262.
    [29] H. Siddiqi, U. Kumari, S. Biswas, A. Mishra, B.C. Meikap, A synergistic study of reaction kinetics and heat transfer with multi-component modelling approach for the pyrolysis of biomass waste, Energy, 204 (2020) 117933.
    [30] T. Dickerson, J. Soria, Catalytic fast pyrolysis: a review, Energies, 6 (2013) 514-538.
    [31] Nishu, R. Liu, M.M. Rahman, M. Sarker, M. Chai, C. Li, J. Cai, A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: Focus on structure, Fuel Processing Technology, 199 (2020) 106301.
    [32] R. Kumar, V. Strezov, H. Weldekidan, J. He, S. Singh, T. Kan, B. Dastjerdi, Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels, Renewable and Sustainable Energy Reviews, 123 (2020) 109763.
    [33] R. Liu, M. Sarker, M.M. Rahman, C. Li, M. Chai, Nishu, R. Cotillon, N.R. Scott, Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production – A review, Progress in Energy and Combustion Science, 80 (2020) 100852.
    [34] P.T. Williams, N. Nugranad, Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks, Energy, 25 (2000) 493-513.
    [35] A. Aho, N. Kumar, K. Eränen, T. Salmi, M. Hupa, D.Y. Murzin, Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure, Fuel, 87 (2008) 2493-2501.
    [36] M.M. Rahman, M. Chai, M. Sarker, Nishu, R. Liu, Catalytic pyrolysis of pinewood over ZSM-5 and CaO for aromatic hydrocarbon: Analytical Py-GC/MS study, Journal of the Energy Institute, 93 (2020) 425-435.
    [37] R. French, S. Czernik, Catalytic pyrolysis of biomass for biofuels production, Fuel Processing Technology, 91 (2010) 25-32.
    [38] A.E. Atabani, A.a.H. Al-Muhtaseb, G. Kumar, G.D. Saratale, M. Aslam, H.A. Khan, Z. Said, E. Mahmoud, Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery, Fuel, 254 (2019) 115640.
    [39] K. Johnson, Y. Liu, M. Lu, A Review of Recent Advances in Spent Coffee Grounds Upcycle Technologies and Practices, Frontiers in Chemical Engineering, 4 (2022) 838605.
    [40] E. Bottani, L. Tebaldi, A. Volpi, The role of ICT in supporting spent coffee grounds collection and valorization: A quantitative assessment, Sustainability, 11 (2019) 6572.
    [41] J. McNutt, Q. He, Spent coffee grounds: A review on current utilization, Journal of Industrial and Engineering Chemistry, 71 (2019) 78-88.
    [42] M. Pagett, K.S. Teng, G. Sullivan, W. Zhang, Reusing waste coffee grounds as electrode materials: recent advances and future opportunities, Global Challenges, 7 (2023) 2200093.
    [43] J.A. Duke, Ricinus communis L., in, January 9, 1998.
    [44] CONAB, Production of castor oil seed in Brazil from crop year 2010/11 to 2023/24 (in 1,000 metric tons) [Graph], in, February 8, 2024.
    [45] FAO, Castor oil seed production in the Asia-Pacific region in 2022, by country (in 1,000 metric tons) [Graph], (December 27, 2023).
    [46] Andel, Ricinus communis semen, in, 4,29,2020.
    [47] T.A. McKeon, Chapter 4 - Castor (Ricinus communis L.), in: T.A. McKeon, D.G. Hayes, D.F. Hildebrand, R.J. Weselake (Eds.) Industrial Oil Crops, AOCS Press, 2016, pp. 75-112.
    [48] R.J. Parecido, R.P. Soratto, A.M. Fernandes, M.C. Blanes, L.G. Fidelis, H.I. Gitari, S.G. Dutra, Castor Meal and Ground Hydrothermalized Phonolite Optimize Sweet Potato Nutrition, Yield, and Quality, Horticulturae, 10 (2024) 775.
    [49] T.O. Akande, A.A. Odunsi, E.O. Akinfala, A review of nutritional and toxicological implications of castor bean (Ricinus communis L.) meal in animal feeding systems, Journal of Animal Physiology and Animal Nutrition, 100 (2016) 201-210.
    [50] W.P. Bozza, W.H. Tolleson, L.A.R. Rosado, B. Zhang, Ricin detection: tracking active toxin, Biotechnology advances, 33 (2015) 117-123.
    [51] P. Sehgal, M. Khan, O. Kumar, R. Vijayaraghavan, Purification, characterization and toxicity profile of ricin isoforms from castor beans, Food and Chemical Toxicology, 48 (2010) 3171-3176.
    [52] J.-L. Dubois, S. Kaliaguine, Alternative routes to more sustainable acrylonitrile: biosourced acrylonitrile, in, De Gruyter, 2020, pp. 31-62.
    [53] T. Wang, M.S. Ide, M.R. Nolan, R.J. Davis, B.H. Shanks, Renewable production of nylon-6, 6 monomers from biomass-derived 5-hydroxymethylfurfural (HMF), Energy and Environment, 5 (2016) 1-5.
    [54] Y. Zhong, F. Liu, J. Li, C. Guo, Catalytic C–N bond formation strategies for green amination of biomass-derived molecules, Green Chemistry, 26 (2024) 11019-11060.
    [55] L. Xu, C. Shi, Z. He, H. Zhang, M. Chen, Z. Fang, Y. Zhang, Recent Advances of Producing Biobased N-Containing Compounds via Thermo-Chemical Conversion with Ammonia Process, Energy & Fuels, 34 (2020) 10441-10458.
    [56] M. Pelckmans, T. Renders, S. Van de Vyver, B. Sels, Bio-based amines through sustainable heterogeneous catalysis, Green Chemistry, 19 (2017) 5303-5331.
    [57] Y. Dong, L. Dong, X. Gu, Y. Wang, Y. Liao, R. Luque, Z. Chen, Sustainable production of active pharmaceutical ingredients from lignin-based benzoic acid derivatives via “demand orientation”, Green Chemistry, 25 (2023) 3791-3815.
    [58] B.M. Matsagar, R.-X. Yang, S. Dutta, Y.S. Ok, K.C.-W. Wu, Recent progress in the development of biomass-derived nitrogen-doped porous carbon, Journal of Materials Chemistry A, 9 (2021) 3703-3728.
    [59] S. Gomez, J.A. Peters, T. Maschmeyer, The reductive amination of aldehydes and ketones and the hydrogenation of nitriles: mechanistic aspects and selectivity control, Advanced Synthesis & Catalysis, 344 (2002) 1037-1057.
    [60] A.N. Philippova, D.V. Vorobyeva, P.S. Gribanov, I.A. Godovikov, S.N. Osipov, Synthesis of functionalized azepines via Cu (I)-catalyzed tandem amination/cyclization reaction of fluorinated allenynes, Molecules, 27 (2022) 5195.
    [61] H. Chen, Y. Si, Y. Chen, H. Yang, D. Chen, W. Chen, NOx precursors from biomass pyrolysis: Distribution of amino acids in biomass and Tar-N during devolatilization using model compounds, Fuel, 187 (2017) 367-375.
    [62] J. Yu, K. Maliutina, A. Tahmasebi, A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis, Bioresource Technology, 270 (2018) 689-701.
    [63] Y. Zhang, Z. Yuan, B. Hu, J. Deng, Q. Yao, X. Zhang, X. Liu, Y. Fu, Q. Lu, Direct conversion of cellulose and raw biomass to acetonitrile by catalytic fast pyrolysis in ammonia, Green Chemistry, 21 (2019) 812-820.
    [64] H. Chen, G. Lin, Y. Chen, W. Chen, H. Yang, Biomass Pyrolytic Polygeneration of Tobacco Waste: Product Characteristics and Nitrogen Transformation, Energy & Fuels, 30 (2016) 1579-1588.
    [65] 財政部關務署, 海關進出口統計貿易統計資料庫查詢綜合查詢, in, 10341 臺北市大同區塔城街13號, 2013.
    [66] J.R. Grace, X. Bi, N. Ellis, Essentials of fluidization technology, John Wiley & Sons, 2020.
    [67] K. Daizo, O. Levenspiel, Fluidization engineering, (1991).
    [68] M. Razzaque, DEVELOPMENT AND ASSESSMENT OF A FAST PYROLYSIS REACTOR FOR BIO-OIL, SYNGAS AND BIO-CHAR PRODUCTION FROM BIOMASS RESIDUES, (2016).
    [69] 郭慕孙, 李洪钟, 流态化手册, 北 京: 化 学 工 业 出, (2008).
    [70] 吴占松, 流态化技术基础及应用, 化学工业出版社, 2006.
    [71] 馬祥宸, 蔡文達, 張君華, 310不銹鋼的高溫循環氧化行為研究, 防蝕工程, 31 (2017) 1-7.
    [72] J. McDonough, R. Law, D. Reay, V. Zivkovic, Fluidization in small-scale gas-solid 3D-printed fluidized beds, Chemical Engineering Science, 200 (2019) 294-309.
    [73] P.I. Company, 6200 Isoperibol Calorimeter, in, 211 Fifty-Third Street Moline, IL 61265-1770.
    [74] 國立中興大學研究發展處貴重儀器中心, 元素分析服務簡介, in, 01/22/2024.
    [75] Elementar, Unsurpassed performance and versatility in elemental analysis, in, 119 Comac Street Ronkonkoma, NY 11779.
    [76] 國. 核心設施中心貴重儀器設備組, 高解析氣相層析飛行質譜儀/High Resolution TOF- Mass spectrometer, in, 701401 臺南市東區大學路1號 自強校區 儀器設備大樓2樓.
    [77] 李輝煌, 田口方法-品質設計的原理與實務, in, 新北市: 高立圖書有限公司, 2015.
    [78] R.J.M. Westerhof, D.W.F. Brilman, W.P.M. van Swaaij, S.R.A. Kersten, Effect of Temperature in Fluidized Bed Fast Pyrolysis of Biomass: Oil Quality Assessment in Test Units, Industrial & Engineering Chemistry Research, 49 (2010) 1160-1168.
    [79] X. Wang, S.R.A. Kersten, W. Prins, W.P.M. van Swaaij, Biomass Pyrolysis in a Fluidized Bed Reactor. Part 2:  Experimental Validation of Model Results, Industrial & Engineering Chemistry Research, 44 (2005) 8786-8795.
    [80] S. Li, R. Diao, X. Liu, F. Qi, S. Yang, P. Ma, Valorization of bio-oil distillation residue through co-pyrolysis with moso bamboo to prepare biochar: Optimization study on effects of blend ratio, pyrolysis temperature, and residence time, Journal of Analytical and Applied Pyrolysis, 177 (2024) 106356.
    [81] Z. Wang, M. Wu, G. Chen, M. Zhang, T. Sun, K.G. Burra, S. Guo, Y. Chen, S. Yang, Z. Li, T. Lei, A.K. Gupta, Co-pyrolysis characteristics of waste tire and maize stalk using TGA, FTIR and Py-GC/MS analysis, Fuel, 337 (2023) 127206.
    [82] J. Liu, L. Huang, W. Xie, J. Kuo, M. Buyukada, F. Evrendilek, Characterizing and optimizing (co-)pyrolysis as a function of different feedstocks, atmospheres, blend ratios, and heating rates, Bioresource Technology, 277 (2019) 104-116.
    [83] C. Wang, Z. Luo, S. Li, X. Zhu, Coupling effect of condensing temperature and residence time on bio-oil component enrichment during the condensation of biomass pyrolysis vapors, Fuel, 274 (2020) 117861.
    [84] S. Papari, K. Hawboldt, P. Fransham, Study of selective condensation for woody biomass pyrolysis oil vapours, Fuel, 245 (2019) 233-239.
    [85] S. Papari, K. Hawboldt, A review on condensing system for biomass pyrolysis process, Fuel Processing Technology, 180 (2018) 1-13.
    [86] 詹峻智, 流體化床快速熱裂解系統建置和產物分析研究, in: 航空太空工程學系, 國立成功大學, 台南市, 2017, pp. 39.
    [87] 陳威羽, 菇類培養廢料焙燒物於流體化床進行快速裂解產製生質油之實驗與模擬, in: 機械工程學系所, 國立中興大學, 台中市, 2016, pp. 65.
    [88] 陳延昌, 生質原料快速熱解成生質油之設備研製及製程最佳化研究, in: 機械工程學研究所, 國立臺灣大學, 2011, pp. 1-79.
    [89] M.B. Pecha, J.I.M. Arbelaez, M. Garcia-Perez, F. Chejne, P.N. Ciesielski, Progress in understanding the four dominant intra-particle phenomena of lignocellulose pyrolysis: chemical reactions, heat transfer, mass transfer, and phase change, Green chemistry, 21 (2019) 2868-2898.
    [90] C. Bamford, J. Crank, D. Malan, The combustion of wood. Part I, in: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 1946, pp. 166-182.
    [91] S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochimica Acta, 520 (2011) 1-19.
    [92] T. Cordero, F. Garcia, J. Rodriguez, A kinetic study of holm oak wood pyrolysis from dynamic and isothermal TG experiments, Thermochimica acta, 149 (1989) 225-237.
    [93] T. Cordero, J.M. Rodríguez-Maroto, J. Rodríguez-Mirasol, J.J. Rodríguez, On the kinetics of thermal decomposition of wood and wood components, Thermochimica Acta, 164 (1990) 135-144.
    [94] C. Di Blasi, Modeling chemical and physical processes of wood and biomass pyrolysis, Progress in energy and combustion science, 34 (2008) 47-90.
    [95] T.R. Rao, A. Sharma, Pyrolysis rates of biomass materials, Energy, 23 (1998) 973-978.
    [96] A.O. Oyedun, T. Gebreegziabher, C.W. Hui, Mechanism and modelling of bamboo pyrolysis, Fuel Processing Technology, 106 (2013) 595-604.
    [97] F.J. Kilzer, A. Broido, Speculations on the nature of cellulose pyrolysis, Pyrodynamics. 2: 151-163, 2 (1965) 151-163.
    [98] A.G. Bradbury, Y. Sakai, F. Shafizadeh, A kinetic model for pyrolysis of cellulose, Journal of applied polymer science, 23 (1979) 3271-3280.
    [99] C. Koufopanos, A. Lucchesi, G. Maschio, Kinetic modelling of the pyrolysis of biomass and biomass components, The Canadian Journal of Chemical Engineering, 67 (1989) 75-84.
    [100] P.T. Williams, S. Besler, The pyrolysis of rice husks in a thermogravimetric analyser and static batch reactor, Fuel, 72 (1993) 151-159.
    [101] M.J. Antal Jr, Effects of reactor severity on the gas-phase pyrolysis of cellulose-and kraft lignin-derived volatile matter, Industrial & Engineering Chemistry Product Research and Development, 22 (1983) 366-375.
    [102] J.J. Orfão, F.J. Antunes, J.L. Figueiredo, Pyrolysis kinetics of lignocellulosic materials—three independent reactions model, Fuel, 78 (1999) 349-358.
    [103] M.J. Starink, The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods, Thermochimica Acta, 404 (2003) 163-176.
    [104] V.M. Gorbachev, Criterion of the existence of compensation relationship for non-isothermal kinetics, Journal of Thermal Analysis, 8 (1975) 585-587.
    [105] A.W. Coats, J.P. Redfern, Kinetic Parameters from Thermogravimetric Data, Nature, 201 (1964) 68-&.
    [106] C. Doyle, Synthesis and evaluation of thermally stable polymers. II, Polymer evaluation. Appl Polym Sci, 5 (1961) 285-292.
    [107] P. Murray, J. White, Kinetics of the thermal dehydration of clays. Part IV. Interpretation of the differential thermal analysis of the clay minerals, Trans Br Ceram Soc, 54 (1955) 204-238.
    [108] M.J. Starink, A new method for the derivation of activation energies from experiments performed at constant heating rate, Thermochimica Acta, 288 (1996) 97-104.
    [109] G.I. Senum, R.T. Yang, Rational approximations of the integral of the Arrhenius function, Journal of Thermal Analysis, 11 (1977) 445-447.
    [110] S.M. Ross, Introduction to probability and statistics for engineers and scientists, Academic press, 2020.
    [111] A. Aboulkas, K. El Harfi, A. El Bouadili, Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms, Energy Conversion and Management, 51 (2010) 1363-1369.
    [112] Z. Yao, S. Yu, W. Su, W. Wu, J. Tang, W. Qi, Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods, Waste Manag Res, 38 (2020) 77-85.
    [113] J.M. Criado, J. Málek, A. Ortega, Applicability of the master plots in kinetic analysis of non-isothermal data, Thermochimica Acta, 147 (1989) 377-385.
    [114] D. Mallick, M.K. Poddar, P. Mahanta, V.S. Moholkar, Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis, Bioresource Technology, 261 (2018) 294-305.
    [115] A. Ortega, A simple and precise linear integral method for isoconversional data, Thermochimica Acta, 474 (2008) 81-86.
    [116] S. Vyazovkin, Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature, Journal of Computational Chemistry, 18 (1997) 393-402.
    [117] S. Vyazovkin, Modification of the integral isoconversional method to account for variation in the activation energy, Journal of Computational Chemistry, 22 (2001) 178-183.
    [118] W.X. Wu, Y.F. Mei, L. Zhang, R.H. Liu, J.M. Cai, Effective Activation Energies of Lignocellulosic Biomass Pyrolysis, Energy & Fuels, 28 (2014) 3916-3923.
    [119] F.J. Gotor, J.M. Criado, J. Malek, N. Koga, Kinetic Analysis of Solid-State Reactions:  The Universality of Master Plots for Analyzing Isothermal and Nonisothermal Experiments, The Journal of Physical Chemistry A, 104 (2000) 10777-10782.
    [120] S. Sobek, S. Werle, Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance, Fuel, 261 (2020) 116459.
    [121] V. Vasudev, X. Ku, J. Lin, Kinetic study and pyrolysis characteristics of algal and lignocellulosic biomasses, Bioresource Technology, 288 (2019) 121496.
    [122] V. Vasudev, X. Ku, J. Lin, Pyrolysis of algal biomass: Determination of the kinetic triplet and thermodynamic analysis, Bioresour Technol, 317 (2020) 124007.
    [123] J. Šesták, G. Berggren, Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures, Thermochimica Acta, 3 (1971) 1-12.
    [124] H.P. Nath, B.K. Dutta, D. Kalita, B.K. Saikia, N. Saikia, Evaluation of the effect of high sulfur subbituminous coal on the devolatilization of biomass residue by using model free, model fitting and combined kinetic methods, Fuel, 310 (2022) 122235.
    [125] X. Wang, M. Hu, W. Hu, Z. Chen, S. Liu, Z. Hu, B. Xiao, Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics, Bioresour Technol, 219 (2016) 510-520.
    [126] 葉松林, 解模糊關係方程式之改良演算法及非線性最佳化問題應用, in: 應用電子科技研究所, 國立臺灣師範大學, 2006, pp. 1-143.
    [127] 胡可孟, 運用遺傳演算法於考慮碳稅下之貨櫃排艙規劃, in: 運輸科學系, 國立臺灣海洋大學, 基隆市, 2024, pp. 48.
    [128] J. Cai, L. Ji, Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass, Journal of Mathematical Chemistry, 42 (2007) 547-553.
    [129] T. Mani, P. Murugan, N. Mahinpey, Determination of distributed activation energy model kinetic parameters using simulated annealing optimization method for nonisothermal pyrolysis of lignin, Industrial & Engineering Chemistry Research, 48 (2009) 1464-1467.
    [130] G. Rein, C. Lautenberger, A.C. Fernandez-Pello, J.L. Torero, D.L. Urban, Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion, Combustion and flame, 146 (2006) 95-108.
    [131] A.A. Jain, A. Mehra, V.V. Ranade, Processing of TGA data: Analysis of isoconversional and model fitting methods, Fuel, 165 (2016) 490-498.
    [132] T.L. Shan, H.G. Bian, K.S. Wang, Z.Y. Li, J. Qiu, D.L. Zhu, C.S. Wang, X.L. Tian, Study on pyrolysis characteristics and kinetics of mixed waste plastics under different atmospheres, Thermochimica Acta, 722 (2023) 179467.
    [133] R. Fahmi, A.V. Bridgwater, I. Donnison, N. Yates, J.M. Jones, The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability, Fuel, 87 (2008) 1230-1240.
    [134] H.H. Sait, A. Hussain, A.A. Salema, F.N. Ani, Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis, Bioresource Technology, 118 (2012) 382-389.
    [135] P. McKendry, Energy production from biomass (part 1): overview of biomass, Bioresource Technology, 83 (2002) 37-46.
    [136] S. Mayson, I.D. Williams, Applying a circular economy approach to valorize spent coffee grounds, Resources, Conservation and Recycling, 172 (2021) 105659.
    [137] S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, An overview of the chemical composition of biomass, Fuel, 89 (2010) 913-933.
    [138] J. Xiong, S. Zhang, L. Ke, Q. Wu, Q. Zhang, X. Cui, A. Dai, C. Xu, K. Cobb, Y. Liu, R. Ruan, Y. Wang, Research progress on pyrolysis of nitrogen-containing biomass for fuels, materials, and chemicals production, Science of The Total Environment, 872 (2023) 162214.
    [139] A.M. Sokoto, T. Bhaskar, Pyrolysis of waste castor seed cake: a thermo-kinetics study, European Journal of Sustainable Development Research, 2 (2018) 18.
    [140] R. Kaur, P. Gera, M.K. Jha, T. Bhaskar, Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis, Bioresource Technology, 250 (2018) 422-428.
    [141] Z.T. Lian, K.J. Chua, S.K. Chou, A thermoeconomic analysis of biomass energy for trigeneration, Applied Energy, 87 (2010) 84-95.
    [142] J. Simões, É. Maricato, F.M. Nunes, M.R. Domingues, M.A. Coimbra, Thermal stability of spent coffee ground polysaccharides: Galactomannans and arabinogalactans, Carbohydrate Polymers, 101 (2014) 256-264.
    [143] X. Li, V. Strezov, T. Kan, Energy recovery potential analysis of spent coffee grounds pyrolysis products, Journal of Analytical and Applied Pyrolysis, 110 (2014) 79-87.
    [144] M.n. Lapuerta, J.J. Hernández, J.n. Rodrı́guez, Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis, Biomass and Bioenergy, 27 (2004) 385-391.
    [145] R.K. Sharma, J.B. Wooten, V.L. Baliga, X. Lin, W. Geoffrey Chan, M.R. Hajaligol, Characterization of chars from pyrolysis of lignin, Fuel, 83 (2004) 1469-1482.
    [146] R.K. Singh, K.P. Shadangi, Liquid fuel from castor seeds by pyrolysis, Fuel, 90 (2011) 2538-2544.
    [147] K. Cheng, W.T. Winter, A.J. Stipanovic, A modulated-TGA approach to the kinetics of lignocellulosic biomass pyrolysis/combustion, Polymer degradation and stability, 97 (2012) 1606-1615.
    [148] Z. Chen, M. Hu, X. Zhu, D. Guo, S. Liu, Z. Hu, B. Xiao, J. Wang, M. Laghari, Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis, Bioresource Technology, 192 (2015) 441-450.
    [149] L.F. Ballesteros, J.A. Teixeira, S.I. Mussatto, Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin, Food and bioprocess technology, 7 (2014) 3493-3503.
    [150] P. Brachi, V. Santes, E. Torres-Garcia, Pyrolytic degradation of spent coffee ground: A thermokinetic analysis through the dependence of activation energy on conversion and temperature, Fuel, 302 (2021) 120995.
    [151] A. Khawam, D.R. Flanagan, Solid-State Kinetic Models:  Basics and Mathematical Fundamentals, The Journal of Physical Chemistry B, 110 (2006) 17315-17328.
    [152] M. Poletto, H.L.O. Júnior, A.J. Zattera, Thermal decomposition of natural fibers: kinetics and degradation mechanisms, Reactions and mechanisms in thermal analysis of advanced materials, (2015) 515-545.
    [153] C. Primaz, O. Gil-Castell, A. Ribes-Greus, Strategies towards thermochemical valorisation of spent coffee grounds (SCG): Kinetic analysis of the thermal and thermo-oxidative decomposition, Biomass and Bioenergy, 174 (2023) 106840.
    [154] A. Khawam, D.R. Flanagan, Solid-state kinetic models: basics and mathematical fundamentals, J Phys Chem B, 110 (2006) 17315-17328.
    [155] X. Wang, M. Hu, W. Hu, Z. Chen, S. Liu, Z. Hu, B. Xiao, Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics, Bioresource Technology, 219 (2016) 510-520.
    [156] B. Janković, Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods, Chemical Engineering Journal, 139 (2008) 128-135.
    [157] A. Anca-Couce, A. Berger, N. Zobel, How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme, Fuel, 123 (2014) 230-240.
    [158] N. Liu, H. Huang, X. Huang, R. Li, J. Feng, Y. Wu, Co-pyrolysis Behavior of Coal and Biomass: Synergistic Effect and Kinetic Analysis, ACS Omega, 9 (2024) 31803-31813.
    [159] R. Agrawal, N.R. Singh, F.H. Ribeiro, W.N. Delgass, D.F. Perkis, W.E. Tyner, Synergy in the hybrid thermochemical–biological processes for liquid fuel production, Computers & Chemical Engineering, 33 (2009) 2012-2017.
    [160] H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86 (2007) 1781-1788.
    [161] T. Kan, V. Strezov, T.J. Evans, Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters, Renewable and Sustainable Energy Reviews, 57 (2016) 1126-1140.
    [162] J. Akhtar, N. Saidina Amin, A review on operating parameters for optimum liquid oil yield in biomass pyrolysis, Renewable and Sustainable Energy Reviews, 16 (2012) 5101-5109.
    [163] D. Chen, J. Zhou, Q. Zhang, X. Zhu, Evaluation methods and research progresses in bio-oil storage stability, Renewable and Sustainable Energy Reviews, 40 (2014) 69-79.
    [164] J. McMurry, Organic chemistry, Cengage Learning, 2016.
    [165] A.V. Marques, H. Pereira, Aliphatic bio-oils from corks: A Py–GC/MS study, Journal of Analytical and Applied Pyrolysis, 109 (2014) 29-40.
    [166] T. Jain, Fatty acid composition of oilseed crops: a review, Emerging technologies in food science: focus on the developing world, (2020) 147-153.
    [167] C. Liu, J. Hu, H. Zhang, R. Xiao, Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors, Fuel, 182 (2016) 864-870.
    [168] C. Li, X. Zhao, A. Wang, G.W. Huber, T. Zhang, Catalytic Transformation of Lignin for the Production of Chemicals and Fuels, Chemical Reviews, 115 (2015) 11559-11624.
    [169] J.-P. Cao, X.-Y. Zhao, K. Morishita, X.-Y. Wei, T. Takarada, Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge, Bioresource Technology, 101 (2010) 7648-7652.
    [170] F. Huang, A. Tahmasebi, K. Maliutina, J. Yu, Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways, Bioresource Technology, 245 (2017) 1067-1074.
    [171] L.K. Hoang Pham, T.T. Vi Tran, S. Kongparakul, P. Reubroycharoen, M. Ding, G. Guan, D.-V.N. Vo, P. Jaiyong, N. Youngvises, C. Samart, Data-driven prediction of biomass pyrolysis pathways toward phenolic and aromatic products, Journal of Environmental Chemical Engineering, 9 (2021) 104836.
    [172] K. Li, L. Zhang, L. Zhu, X. Zhu, Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry, Bioresource Technology, 234 (2017) 48-52.
    [173] R.K. Sharma, W.G. Chan, J.I. Seeman, M.R. Hajaligol, Formation of low molecular weight heterocycles and polycyclic aromatic compounds (PACs) in the pyrolysis of α-amino acids, Journal of Analytical and Applied Pyrolysis, 66 (2003) 97-121.
    [174] X. Wang, X. Tang, X. Yang, Pyrolysis mechanism of microalgae Nannochloropsis sp. based on model compounds and their interaction, Energy Conversion and Management, 140 (2017) 203-210.
    [175] L. Leng, L. Yang, J. Chen, S. Leng, H. Li, H. Li, X. Yuan, W. Zhou, H. Huang, A review on pyrolysis of protein-rich biomass: Nitrogen transformation, Bioresource Technology, 315 (2020) 123801.
    [176] T. Kaptı, Synthesis of indole fused heterocyclic compounds, in, Middle East Technical University (Turkey), 2013.
    [177] J.A. Joule, Heterocyclic chemistry, CRC Press, 2020.
    [178] X. Mo, D.P. Rao, K. Kaur, R. Hassan, A.S. Abdel-Samea, S.M. Farhan, S. Bräse, H. Hashem, Indole Derivatives: A Versatile Scaffold in Modern Drug Discovery-An Updated Review on Their Multifaceted Therapeutic Applications (2020-2024), Molecules, 29 (2024).
    [179] L. Ferrer, M. Mindt, M. Suarez-Diez, T. Jilg, M. Zagorščak, J.-H. Lee, K. Gruden, V.F. Wendisch, K. Cankar, Fermentative Indole Production via Bacterial Tryptophan Synthase Alpha Subunit and Plant Indole-3-Glycerol Phosphate Lyase Enzymes, Journal of Agricultural and Food Chemistry, 70 (2022) 5634-5645.
    [180] Y. Fan, U. Hornung, N. Dahmen, A. Kruse, Hydrothermal liquefaction of protein-containing biomass: Study of model compounds for Maillard reactions, Biomass Conversion and Biorefinery, 8 (2018) 909-923.
    [181] K. Maher, D. Bressler, Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals, Bioresource technology, 98 (2007) 2351-2368.
    [182] X. Zhao, F. Yang, Z. Li, H. Tan, Formation and emission characteristics of PAHs during pyrolysis and combustion of coal and biomass, Fuel, 378 (2024) 132935.
    [183] T. McGrath, R. Sharma, M. Hajaligol, An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials, Fuel, 80 (2001) 1787-1797.
    [184] B.B. Uzun, E. Apaydin-Varol, F. Ateş, N. Özbay, A.E. Pütün, Synthetic fuel production from tea waste: Characterisation of bio-oil and bio-char, Fuel, 89 (2010) 176-184.
    [185] H. Hernando, A.M. Hernández-Giménez, C. Ochoa-Hernández, P.C. Bruijnincx, K. Houben, M. Baldus, P. Pizarro, J.M. Coronado, J. Fermoso, J. Čejka, Engineering the acidity and accessibility of the zeolite ZSM-5 for efficient bio-oil upgrading in catalytic pyrolysis of lignocellulose, Green Chemistry, 20 (2018) 3499-3511.
    [186] C.M. Lok, J. Van Doorn, G. Aranda Almansa, Promoted ZSM-5 catalysts for the production of bio-aromatics, a review, Renewable and Sustainable Energy Reviews, 113 (2019) 109248.
    [187] R. Geng, Y. Liu, Y. Guo, M. Dong, S. Wang, W. Fan, J. Wang, Z. Qin, Evolution of carbon deposits during ethylene aromatization over Zn/ZSM-5, Fuel, 358 (2024) 130078.
    [188] B. Valle, A. Remiro, N. García‐Gómez, A.G. Gayubo, J. Bilbao, Recent research progress on bio‐oil conversion into bio‐fuels and raw chemicals: a review, Journal of Chemical Technology & Biotechnology, 94 (2019) 670-689.
    [189] L. Moens, R.J. Evans, M.J. Looker, M.R. Nimlos, A comparison of the Maillard reactivity of proline to other amino acids using pyrolysis-molecular beam mass spectrometry, Fuel, 83 (2004) 1433-1443.
    [190] D. Kunii, O. Levenspiel, Fluidization engineering, Elsevier, 2013.
    [191] W.-C. Yang, Handbook of fluidization and fluid-particle systems, CRC press, 2003.
    [192] D. Leith, D. Mehta, Cyclone performance and design, Atmospheric Environment (1967), 7 (1973) 527-549.

    無法下載圖示 校內:2027-12-31公開
    校外:2027-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE