| 研究生: |
姜定良 Chiang, Ding-Liang |
|---|---|
| 論文名稱: |
奈米氧化錳粉末化學合成及其性質研究 Synthesis and properties of nano-manganese oxide by chemical methods |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 奈米顆粒 、氧化錳 、奈米纖維 、自組裝 |
| 外文關鍵詞: | self-assembly, manganese oxide, nanofiber, nanoparticle |
| 相關次數: | 點閱:92 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用化學合成的方法,以界面活性劑CTAB形成微胞,自組裝合成奈米型態錳氧化物,並藉由改變界面活性劑CTAB的濃度與NaOH 濃度等參數合成錳氧化物。分別以XRD、TEM、BET分析其結構、表面型態與比表面積。
實驗結果顯示:當添加NaOH 0.08M時,有α-Mn2O3與Mn3O4兩相共存,隨著添加CTAB濃度的增加,α-Mn2O3相的量增加,未添加CTAB與CTAB 15wt%時,均得到奈米顆粒,CTAB增加至30 wt%與45 wt%時,分別出現奈米顆粒與奈米纖維的錳氧化物,此外,在CTAB含量為45 wt%時,同時出現蟲洞狀的介孔結構,錳氧化物的BET比表面積提高至64.6 m2/g,其氮氣吸脫附曲線具有介孔結構之遲滯現象。未添加NaOH所得錳氧化物,但增加CTAB濃度,表面型態仍以奈米纖維為主,均為α-Mn2O3的相;藉TEM的表面型態觀察與擇區繞射,發現錳氧化物的奈米纖維型態中,纖維表面有孔洞,約6~10 nm,屬於介孔範圍;擇區繞射顯示此特殊表面具有介孔的奈米纖維為單晶α-Mn2O3,屬於C-M2O3結構。
添加NaOH濃度在0.01~0.08 M間均具有奈米纖維與顆粒,粒徑隨NaOH濃度增加而減低,至NaOH 0.10 M有均一的奈米顆粒粒徑30~40 nm;NaOH添加至1.00M時,粒徑增加。比表面積隨粒徑增加而降低。
In this study, nano-manganese oxide has been synthesized by using surfactants CTAB as micellar templates. The effect of experimental parameters, such as the concentrations of CTAB and NaOH, on the synthesis of manganese oxide is evaluated with XRD, TEM, and BET to identify micro-structure, morphology, and specific surface area, respectively.
Experimental results show that manganese oxide exhibits two phases of α-Mn2O3 and Mn3O4 as added with 0.08M NaOH. The amount of α-Mn2O3 increases with increasing the addition of CTAB. The morphologies of manganese oxides synthesized without CTAB and with 15wt% CTAB are nano-particles. With the additions of 30wt% and 45wt% CTAB respectively, the morphology of the manganese oxide exhibits nano-particles and nanofibers, respectively. In addition, with 45wt% CTAB, the mixed-valent manganese oxide exhibits a worm-like structure which increases the specific surface area up to 64.6m2/g and also has a hysteresis loop for N2 adsorption-desorption curves observed. Without addition of NaOH, the manganese oxide has only one phase of α-Mn2O3 ,and from SAD patterns, it exhibits single-crystal α-Mn2O3 porous fibers with sesquioxides C-M2O3 structure. The sizes of the pores on fibers are about 6~10nm belonging to mesopores.
The manganese oxides synthesized by adding NaOH between 0.01 M~0.08 M both have the morphology of nanofibers and nanoparticles with particle size decrease with addition of NaOH increasing. With adding 0.10 M NaOH, the size of particles is uniform about 30~40nm ,but with adding 1.00 M NaOH, the specific surface area is reduced due to the size of particles increasing.
1. C. T. Kresge, M. E. Leonowica, W. J. Roth, J. C. Vartuli, J. S. Beck, ” Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”, Nature, 359 (1992) 710.
2. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka and G. D. Stucky, “Generalized Syntheses of Large-Pore Mesoporous Metal Oxides with Semicrystalline Frameworks” ,Nature, 396(1998) 152.
3. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka and G. D. Stucky, “Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework”,Chem. Mater.,11 (1999)2813.
4. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, “Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures”, J.Am.Chem.Soc., 120(1998)6024.
5. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky,” Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Å Pores”, Science, 279(1998)548.
6. 鄭雅如,“中孔徑分子篩MCM41的合成與形態學之研究”,國立台灣大學化學研究所碩士論文,民國86,p.12。
7. B. Lindmanm and H. Wennerstrom, Micelles: Amphiphile Aggregation in Aqueous solution, Springer-Verlag, Heidelberg (1980), p.6.
8. 高嘉珮,“中孔洞矽氧分子篩合成條件之控制及動力學研究”,國立台灣大學化學研究所碩士論文,民國89,p.5。
9. Y. C. Lin and S. H. Chen, “Ion correlations and counter-ion condensation in ionic micellar solutions” , Condens.Matter , 8(1996)12169.
10. J. N. Israelachvili, S. Marcelja and R. G. Horn, “Physical principles of membrane organization”, Q. Rev. Biophys , 13(1980)121.
11. D. J. Mitchell and B. W. Ninham, “Micelles, vesicles and microemulsionsq”, J. Chem. Soc., Faraday, Trans., 77(1981)1264.
12. D. F. Evans and H. Wennerstrom, “The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet”, VCH Pubisher, New York, (1994), p.14.
13. R. J. Stokes and D. F. Evans, “Fundamentals of Interfacial Engineering”, VHC Publisher, New York, Wiley, (1997), p. 215.
14. S. Zhang, Z. Chen, S. Tan, J. Wang and S. Jin, “Preparation and microstructure of nanometer-sized Mn2O3”, Nanostructure Mater., 8(6)(1997)719.
15. Z. W. Chen, S. Y. Zang, S. Tan, J. Wang and S.Jin, “Different aspects of the microstructure of nanometer-sized Mn2O3”, Mater. Research Bulletin, 34(10/11) (1999)1583.
16. Z. W. Chen, S. Tan, S. Zhang, J. Wang, Y. Zhang and H. Sekine,” Size dependence of phonon Raman spectra in Mn2O3 nanocrystals” Jpn. J. Appl. Phys., 39(2000)6293.
17. C. N. R. Rao, A. K. Cheetham, R. Mahesh, “Giant Magnetoresistance and Related Properties of Rare-Earth Manganates and Other Oxide Systems”, Chem. Mater., 8(1996)2421.
18 S. Ching, E. J. Welch, S. M. Hughes, A. B. F. Bahadoor and S. L. Suib, “Nonaqueous sol-gel syntheses of microporous manganese oxide”, Chem.Mater., 14(2002)1292.
19. Z. Tian, W. Tong, J. Wang, N. Duan, V. V. Krishnan and S. L. Suib, “Manganese oxide mesoporous structures, mixed-valent semiconducting catalysts”, Science, 276(1997)926.
20. W. Wang, C. Xu, G. Wang, Y. Liu and C. Zheng, “Preparation of smooth single-crystal Mn3O4 nanowires”, Adv. Mater., 14(2002)837.
21. G. Xia, W. Tong, E. N. Tolentino, N. G. Duan, S. L. Brock, J. Y. Wang and S. L. Suib, “Synthesis and characterization of nanofibrous sodium manganese oxide with a 2×4 tunnel structure”, Chem. Mater., 13(2001)1585.
22. F. Kleitz, F. Marlow, G. D. Stucky and F. Schuth, “Mesoporous silica fibers: synthesis,internal structure, and growth kinetics ”, Chem. Mater., 13(2001)3587.
23. J. Y. Ying, C. P. Mehnert and M.S.Wong, “Synthesis and Applications of Supramolecular-Templated Mesoporous Materials ”, Angew Chem. Int. Ed., 38 (1999)56.
24. 陳仁慶, “錳離子在人工錳砂表面吸附反應之研究”, 國立中興大學環境工程學系碩士論文,民國91,p.3。
25. S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd Ed., Academic press, New York (1982).
26. S. A. Davis, S. L. Burkett, N. H. Mendelson, S. Mann,” Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases ” , Nature, 385 (1997)420.
27. C. F. Cheng, W. Zhoug, J. Klinowski, “The Role of Surfactant Micelles in the Synthesis of the Mesoporous Molecular Sieve MCM-41”, Langmuir, 11 (1995)2815.
28. K. A. Koyano, T. Tatsumi, “Synthesis of titanium-containing MCM-41”, Micropor. Mater. , 10(1997)59.
29. Q. Huo, D. I. Margolese, G. D. Stucky, “Surfactant control of phases in the synthesis of mesoporous silica-based materials”, Chem.Mater. , 8(1996)1147,.
30. A. C. Voegtlin, A. Matijasic, J. Partarin, C. Sauerland, Y. Grillet, L. Huve, “Room-temperature synthesis of silicate mesoporous MCM-41-type materials: Influence of the synthesis pH on the porosity of the materials obtained”, Micropor. Mater. , 10(1997)137.
31. H. P. Lin, S. Cheng, C. Y. Mou, “Effect of delayed neutralization on the synthesis of mesoporous MCM-41 molecular sieves”, Micropor. Mater., 10(1997)111.
32. T. Ren, X. Zhang, J. Suo, “Synthesis of periodic mesoporous organosilicas via the “S+X−I+” route”, Micropor. Mesopor. Mat., 54(2002)139.
33. B. J. Melde, B. T. Holland, C. F. Blanford, A. Stein, “Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks”, Chem.Mater. , 11(1999)3302.
34. L. G. Teoh, I. M. Hung, J. Shieh, W. H. Lai, M. H. Hon, “High Sensitivity Semiconductor NO2 Gas Sensor Based on Mesoporous WO3 Thin Film”, Electrochemical and Solid-State Letters , 6(2003)G108.
35. A. F. Wells, Structural Inorganic Chemistry, third edition, Clarendon Press, Oxford, 1962, pp.464-466.
36. C. Xu, K. Miyazaki, T. Watanabe, “Humidity sensors using mamganese oxide ”, Sensors and Actuators B , 46(1998)87.
37. E. R. Stobbe, B. A. de Boer, J. W. Geus, “The reduction and oxidation behaviour of manganese oxide ”, Catal. Today , 47(1999)161.
38. L. Dimesso, L. Heider, H. Hahn, “Synthesis of nanocrystalline Mn-oxide by gas condensation ”, Solid State Ionics , 123(1999)39.
39. B. Gillot, M. El Guendouzi , M. Laarj, “Particle size effects on the oxidation-reduction behavior of Mn3O4 hausmannite”, Mater.Chem.Phys.,70(2001)54.
40. E. Finocchio, G. Busca, “Charaterization and hydrocarbon oxidation activity of coprecipitated mixed oxides Mn3O4/Al2O3”, Catal.Today,70(2001)213.
41. Q. Zhao, W. Shih, “Effects of processing parameters on the surface area of Mn2O3 at elevated temperatures ”, Micropor. Mesopor. Mat. , 53(2002)81.
42. A. F. Wells, Structural Inorganic Chemistry, ed.4, Clarendon, Oxford (1975), pp.209-214 and 519-521.
43. A. Firouzi, D. Kumar, L. M. Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G. D. Stucky, and B. F. Chmelka,” Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies”, Science, 267(1995)1138.
44. D. Linden, Handbook of Batteries , ed.2 , New York, McGraw-Hill, 1995., p.65.