簡易檢索 / 詳目顯示

研究生: 孫佳誼
Sun, Chia-Yi
論文名稱: 雙圓盤電漿子結構的共振模態反交會現象
Avoided Resonance Crossing in Double Disk Plasmonic Resonators
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 74
中文關鍵詞: 時域有限差分法表面電漿子混成模型頻率選擇表面
外文關鍵詞: FDTD, Surface plasmons, Hybridization model, Frequency-selective-surface
相關次數: 點閱:150下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文以數值方法展示了電漿子奈米圓盤結構在近、遠場耦合時之反交會現象(Avoided resonance crossings , ARC)。在近場耦合時,不論是上下配置或是左右配置的雙圓盤都會因為結構對稱性的破壞而發生能量及線寬的分裂。而在遠場耦合時,雙層圓盤陣列的Fabry Perot共振波長對應到頻率選擇表面的帶通、帶斥中心時,發生了吸收頻譜的non-reciprocal現象。正、反向入射時同樣利用結構對稱性的破壞也導致能量的交會及線寬的分裂現象,這種正、反向入射時展現出吸收峰消失或增強的non-reciprocal現象可以很好的由Frequency-Selective-Surface-Fabry-Perot model來解釋。

    Avoided-resonance-crossings(ARC) in plasmonic nanodisk structures due to near field or far field couplings were numerically demonstrated. Near field coupling in disk dimmer with both vertical or side-by-side arrangement leads to both energy and linewidth anti-crossing by varying one disk size across the other. Far field coupling in double layered disk arrays of gap size with Fabry-Perot(FP) resonant condition close to the frequency-selective-surface(FSS) stopband center leads to non-reciprocal absorption spectrum as one disk size varying across the other. We observe energy (linewidth) crossing(anti-crossing) of the absorption peak from different side illumination by varying either the size of one disk array or the gap in hetero disk arrays. The disappearing of FP resonant mode from one side illumination and the appearing of nonreciprocal nearly perfect absorption from the other side illumination are well explained by a Frequency-Selective-Surface-Fabry-Perot(FSS-FP) model.

    口試委員會審定書 I 中文摘要 II Abstract III 誌謝 IX 目錄 X 圖目錄 XII 第一章 緒論 1 1.1 簡介 1 1.2 研究動機與本文內容 2 第二章 相關理論簡介 5 2.1 金屬表面電漿子 5 2.2 Fano Resonance 8 2.2.1 自電離態 10 2.3 混成模型理論 12 2.4 頻率選擇表面 14 第三章 數值方法 17 3.1 有限差分時域法(FDTD)簡介 17 3.2 吸收邊界層 21 3.3 模擬空間設置 22 第四章 模擬結果之分析與討論 24 4.1 Avoided Resonance Crossing與雙振子系統 24 4.2 近場分析 26 4.2.1 LSPR 27 4.2.2 Hybridization model與Fano resonance 29 4.2.3 近場的上下耦合ARC 33 4.2.4 近場的左右耦合ARC 39 4.3 遠場分析 42 4.3.1 Grating effect 42 4.3.2 LSPR 44 4.3.3 Fabry Perot 45 4.3.4 遠場的共振腔耦合ARC 48 4.3.5 Non-reciprocal 50 4.3.6 FSS-FP model 54 4.3.7 銀圓盤與PEC結構 58 4.3.8 無損耗結構 61 4.3.9 高損耗結構 64 4.3.10 基板結構 66 第五章 結論與未來展望 69 5.1 結論 69 5.2 未來展望 70 參考文獻 71

    1.SACRED ARCHITECTURE, Journal of the Institute for Sacred Architecture, Issue 14 2008
    2.Martina Abb, Yudong Wang, Pablo Albella, C. H. de Groot, Javier Aizpurua and Otto L. Muskens, “Interference, Coupling, and Nonlinear Control of High-Order Modes in Single Asymmetric Nanoantennas, “ ACS Nano, vol. 6, pp. 6462, 2012.
    3.Prodan. E, Radloff. C, Halas. N and Nordlander. P, “A hybridization model for the plasmon response of complex nanostructures,” Science, vol. 302, pp. 419, 2003.
    4.W. D. Heiss, “Repulsion of resonance states and exceptional points,” Phys. Rev. E, vol. 61, pp. 929, 2000.
    5.Qinghai Song, Li Ge, Jan Wiersig, Huo Cao, “Formation of long-lived resonance in hexagonal cavities by strong coupling of superscar modes,” Physical Review A, vol. 88, pp. 23834, 2013.
    6.H.Cao, J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian Physics, “ Rev.Mod. Phys, vol. 87, pp. 61, 2015.
    7.J. Wiersig, “Formation of long lived scarlike modes near avoided resonance crossing in optical microcavities,” Phys. Rev. Lett, vol. 97, pp. 253901, 2006.
    8.A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons, “ Physics Reports, vol. 408, pp. 131, 2005.
    9.K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing, “ Annual Review of Physical Chemistry, vol. 58, pp. 267, 2007.
    10.M. Faraday, Philos. Trans, “The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light,” Philos. Trans, vol. 147, pp. 145, 1857.
    11.Mie, G. “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann Phys-Berlin, vol. 25, pp. 377, 1908.
    12.U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer, 1995.
    13.Craig F. Bohren, Donald R. Huffman, Absorption and Scattering of Light by Small Particles, WILEY, 2007.
    14.曾賢德, “金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作”,物理雙月刊, vol. 32,pp. 126, 2010.
    15.R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag, vol. 4, pp. 393, 1902.
    16.U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves),” J. Opt. Soc. Am, vol. 31, pp. 213, 1941.
    17.H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev, vol. 66, pp. 163-182, 1944.
    18.A. Roberts, “Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,” J. Opt. Soc. Am. A, vol. 4, pp. 1970, 1987.
    19.U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev, vol. 124, pp. 1866, 1961.
    20.程文芹, “原子自電離態的研究,” 物理, vol. 14,pp. 523, 1985.
    21.Yong S. Joe, Arkady M. Satanin, and Chang Sub Kim, “Classical analogy of Fano resonances,” Physica Scripta, vol. 74, pp. 259, 2006.
    22.F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenna Prop, vol. 61, pp. 1201, 2013.
    23.Q.Y. Wen, Y.S. Xie, H.W. Zhang, Q.H. Yang, Y.X. Li, and Y.L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the THz Band,” Opt. Express, vol. 17, pp. 20256, 2009.
    24.David M. Pozar, Microwave engineer, WILEY, 2012.
    25.K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag, vol. 14, pp. 302, 1966.
    26.B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett, vol. 101, pp. 143902, 2008.
    27.S. Deb and S. D. Gupta, “Critical coupling in a Fabry Perot cavity with metamaterial mirrors,” Opt. Comm, vol. 283, pp. 4764, 2010.
    28.A.C. de C. Lima, and E.A. Parker, “Fabry Perot approach to the design of double layer FSS,” IEEE Proc. Microw. Antennas Prop, vol. 143, pp. 157, 1996.
    29.H.T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express ,vol. 20, pp. 7165, 2012.
    30.Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for EM waves theory design and realization,” Phys. Rev. Applied, vol. 3, pp. 37001, 2015.
    31.N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla1, “Perfect metamaterial absorber,” Phys. Rev. Lett, vol. 100, pp. 207402, 2008.
    32.N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett, vol. 10, pp. 2342, 2010.
    33.N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by Lamellar metallic gratings,” Opt. Express, vol. 16, pp. 15431, 2008.
    34.A. Kolomenskii, S. Peng, J. Hembd, A. Kolomenski, J. Noel, J. Strohaber, W. Teizer, and H. Schuessler, “Interaction and spectral gaps of surface plasmon modes in gold nanostructures,” Opt. Express, vol. 19, pp. 6587, 2011.
    35.C.W. Cheng, M. N. Abbas, C.W. Chiu, K.T. Lai, M.H. Shih, and Y.C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multisized disk arrays,” Opt. Express, vol. 9, pp. 10376, 2012.
    36.R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express, vol. 22, pp. 335, 2014.
    37.H. Park, S.Y. Lee. Kim, B. Lee, and H. Kim, “Near infrared coherent perfect absorption in plasmonic metal insulator metal waveguide,” Opt. Express, vol. 23, pp. 24464, 2015.
    38.T.T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T.Y. Huang, and T.-J. Yen, “Ultra-broad and sharptransition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials,” Opt. Express, vol. 20(7), pp. 7580, 2012.
    39.T.Y. Huang, C.W.Tseng, T.T. Yeh, T.T.Yeh, C.W. Luo, T. Akalin and T.-J. Yen, “Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process,” Sci. Rep, vol. 5, pp. 18605, 2015.
    40.Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene based hyperbolic metamaterials,” Sci. Rep, vol. 4, pp. 5483, 2014.
    41.V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat and V. Pagneux, “Perfect and broadband acoustic absorption by critical coupled subwavelength resonators,” Sci. Rep, vol. 6, pp. 19519, 2016.
    42.Victor Liu, Michelle Povinelli, and Shanhui Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Optics Express, vol. 17, pp. 21897, 2009.
    43.D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett, vol. 100, pp. 183902, 2008.

    下載圖示 校內:2021-07-26公開
    校外:2021-07-26公開
    QR CODE