| 研究生: |
林京翰 Lin, Ching-Han |
|---|---|
| 論文名稱: |
多孔性介質中氫氣擴散燃燒之特性研究 Study of Diffusion Combustion with Hydrogen Using Porous Media Burner |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang 王振源 Wang, Chen-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 氫氣燃燒 、多孔性介質燃燒室 、擴散火焰 、逆水氣轉移 |
| 外文關鍵詞: | Hydrogen Combustion, Porous Media Burner, Diffusion Flame, Reverse Water Gas Shift |
| 相關次數: | 點閱:96 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討氫氣擴散火焰於多孔性介質燃燒室中之特性,並利用其特性進行逆水氣轉移反應之可行性研究。實驗參數包括多孔性介質堆疊塊數(1~4塊)、孔徑大小(15、30PPI)、燃氣進氣流率(3~8 L/min)、當量比(0.25~2)、H2/CO2比(1、3、5)。量測參數為燃燒室的軸向溫度分佈、多孔性介質介面的徑向溫度分佈以及二氧化碳轉化率,並且以影像觀測燃燒室中火焰面,了解多孔介質對火焰的影響。由實驗結果得知,擴散火焰較預混火焰有更廣泛的燃氣操作範圍。在本研究設定的當量比範圍內(當量比=0.25~2),進料的條件越貧油,燃燒室整體的溫度分佈越高。然而當空氣進氣流率固定時,改變氫氣進氣流率對燃燒室整體溫度無顯著之影響。在逆水氣轉移的實驗中,降低氫氣進氣流率,提高H2/CO2比與當量比能提高二氧化碳之轉化率。在參數H2=4 L/min、H2/CO2=5有最高的二氧化碳轉化率(31.6%)。氫氣擴散火焰於多孔性介質之燃燒特性值得更進一步的研究,期望能更深入了解擴散火焰與多孔性介質之間互相影響的關係,並將其廣泛的應用於現有的燃燒系統中。
This research investigates the characteristic of hydrogen diffusion flame and the practicability of the reverse water gas shift reaction in the porous media burner. Experimental parameters included the flow rate of the fuel (3~8 L/min), equivalence ratio (0.25~2), stacked number (1~4 piece), the pore size of the porous media (15, 30 PPI), and the H2/CO2 ratio (1, 3, 5). The measurements of the temperature variation of axial direction of burner and the radial direction of the interface between two porous media, the CO2 conversion efficiency were carried out. Moreover, the flame front in the porous media burner was observed to understand the influence of porous media on the flame characteristic. It was found that the operable range of the hydrogen diffusion flame in the porous media burner was larger than that of the premixed flame. The temperature becomes higher when the equivalence ratio (0.25~2) was more close to the lean-burn conditions. However, effects of hydrogen flow rate were not significant when the air flow rate was fixed. From the test of the reverse water gas shift reaction, decreasing the hydrogen flow rate or increasing the H2/CO2 ratio and the equivalence ratio increased the CO2 conversion efficiency. The highest CO2 conversion efficiency was 31.6% when hydrogen flow rate was 4 L/min and H2/CO2 ratio was 5. The result shows that it can be found at some particular conditions of the hydrogen diffusion flame with porous media burner, but it needs to be further studied in order to apply it to a present combustion system.
[1] “Climate Change 2007: Synthesis Report,” Intergovernmental Panel On Climate Change, 2007.
[2] Nejat, V. T., “Quarter Century of Hydrogen Movement 1974-2000,”International Journal of Hydrogen Energy, Volume25, pp.1143-1150, 2000.
[3] 方良吉, “2010年能源產業技術白皮書,”經濟部能源局,財團法人中衛發展中心編輯,台灣,2010年。
[4] 湯慰祖,“氫氣經濟時代瓦斯業未來之商機,”大台北瓦斯能源開發部,台灣,2003。
[5] Mujeebu M.A., Abdullah, M.Z., Abu Bakar, M.Z., Mohamad, A.A., Abdullah, M.K., “Applications of Porous Media Combustion Technology - A Review,” Applied Energy, Volume 86, Issue 9, pp.1365-1375, 2009.
[6] Barnard, J.A., Bradley J.N., “Flame and Combustion, Second Edition,” Chapman and Hall, New York, 1985.
[7] Heywood, J. B., “Internal Combustion Engine Fundamentals,” McGraw Hill, Nueva York, 1989.
[8] Drell, I. L., Belles, F.E., “Survey of Hydrogen Combustion Properties,” NACA Research Memorandum Report, 1383, 1957.
[9] Sørensen B. “Hydrogen and Fuel Cells: Emerging Technologies and Applications,” Elsevier Academic, Amsterdam, Holland, 2005.
[10] Shudo, T., Omori, K., Hiyama, O., “NOX Reduction and NO2 Emission Characteristics in Rich-Lean Combustion of Hydrogen,” International Journal of Hydrogen Energy, Volume 33, Issue 17, pp.4689-4693, 2008.
[11] Ilbas, M., Crayford, A.P., Yilmaz, I, Bowen, P.J., Syred, N., “Laminar-buming Velocities of Hydrogen-air and Hydrogen-Methane-Air Mixtures: An Experimental Study,” International Journal of Hydrogen Energy, Volume 31, Issue 12, pp.1768-1779, 2006.
[12] Toro, V.V., Mokhov, A.V., Levinsky, H.B, Smooke, M.D., “Combined Experimental and Computational Study of Laminar, Axisymmetric Hydrogen-Air Diffusion Flames.” Proceedings of the Combustion Institute, Volume 30, pp.485-492, 2005.
[13] Pickena¨cker, O., Pickena¨cker, K., Wawrzinek, K., Trimis, D., Pritzkow, W. E. C., Mu¨ller, C., Goedtke, P., Papenburg, U., Adler, J., Standke, G., Heymer, H., Tauscher, W., Jansen, F., “Drying & Firing: Innovative Ceramic Materials for Porous-Medium Burners, II” Interceram, Volume 48, pp.424-434, 1999.
[14] Wood, S., Harris, A.T., “Porous Burners for Lean-Burn Applications,” Energy and Combustion Science, Volume 34, Issue 5, pp.667-684, 2008.
[15] Amanda J. B., Janet, L.E., “Heat Recirculation and Heat Transfer in Porous Burners,” Combustion and Flame, Volume 137, pp.230-241, 2004
[16] Tadao Takeno, Kenji Sato, “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Volume 20, Issue 1&2, pp.73-84, 1979.
[17] Diamantis, D., Mastorakos, E., Goussis, D., “Simulations of Premixed Combustion in Porous Media,” Combustion Theory and Modelling, Volume 6, Issue 3, pp.383-411, 2002.
[18] Marbach, T. L., Agrawal, A.K., “Experimental Study of Surface and Interior Combustion Using Composite Porous Inert Media,” Journal of Engineering for Gas Turbines and Power, Volume 127, pp.307-313, 2005
[19] Alavandi, S. K., Agrawal, A.K., “Experimental Study of Combustion of Hydrogen-Syngas/Methane Fuel Mixtures in a Porous Burner,” International Journal of Hydrogen Energy, Volume 33, Issue 4, pp.1407-1415, 2008.
[20] Pavel, B.I., Mohamad, A.A., “An Experimental and Numerical Study on Heat Transfer Enhancement for Gas Heat Exchangers Fitted with Porous Media,” International Journal of Heat and Mass Transfer, Volume 47, Issue 23, pp.4939-4952, 2004.
[21] 欒晏昌,“氫氣在多孔性介質燃燒室之燃燒特性研究,”國立成功大學航空太空工程學系碩士論文,2009。
[22] 陳瑞驄,“多孔性介質輔助二氧化碳甲烷重組研究,”國立成功大學航空太空工程學系碩士論文,2010。
[23] 黃紀維,“氫於多孔性介質燃燒室應用在觸媒煆燒之研究,” 國立成功大學航空太空工程學系碩士論文,2011。
[24] Soberanis, M.A., Fernandez, A.M., “A Review on The Technical Adaptations for Internal Combustion Engines to Operate with Gas/Hydrogen Mixtures, ” International Journal of Hydrogen Energy, Volume 35, Issue 21, pp.12134-12140, 2010.
[25] White, C.M., Steeper, R.R., “The Hydrogen-Fueled Internal Combustion Engine: a Technical Review,” International Journal of Hydrogen Energy, Volume 31, Issue 10, pp.1292-1305, 2006.
[26] Afsharvahid, S., Ashman, P.J., “Investigation of NOx Conversion Characteristics in a Porous Medium,” Combustion and Flame, Volume 152, pp.604–615, 2008.
[27] Al-Hamamrea, Z., Voß, S., Trimis, D., “Hydrogen Production by Thermal Partial Oxidation of Hydrocarbon Fuels in Porous Media Based Reformer,” International Journal of Hydrogen Energy, Volume 34, pp.827–832, 2009.
[28] Pedersen-Mjaanes, H., Chan, L., Mastorakos, E., “Hydrogen Production from Rich Combustion in Porous Media,” International Journal of Hydrogen Energy, Volume 30, pp.579–592, 2005.
[29] Bradean, R., Ingham, D.B., “The Unsteady Penetration of Free Convection Flows Caused by Heating and Cooling Flat Surfaces in Porous Media,” International Journal Heat Mass Transfer, Volume 40, pp.665–687, 1997.
[30] Tseng, C. J., “Effect of Hydrogen Addition on Methane Combustion in a Porous Medium Burner,” International Journal of Hydrogen Energy, Volume 27, Issue 6, pp.699-707, 2002.
[31] 張宏禾,“觸媒對多孔性介質爐之預混燃燒現象之影響,”國立中央大學機械工程學系碩士論文,2003。
[32] 劉嘉峰,“多孔性燃燒加熱爐燃燒現象研究,”國立中正大學機械工程研究所博士論文,2005。
[33] 李家欣,“多孔性陶瓷介質燃燒爐結構對燃燒現象之影響,”國立中央大學機械工程學系碩士論文,2000。