簡易檢索 / 詳目顯示

研究生: 甄和宏
Chen, Ho-Hung
論文名稱: 改良隨機遞減法於非定常環境振動之模態參數識別研究
Identification of Modal Parameters from Non-stationary Ambient Vibration by the Modified Random Decrement Technique
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系碩士在職專班
Department of Aeronautics & Astronautics (on the job class)
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: 隨機遞減法非定常環境振動亞伯拉罕時域法模態可信度
外文關鍵詞: Random Decrement Technique, Non-stationary Ambient Vibration, ITD, MAC
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結構系統的動態特性可藉由其模態參數來描述,包含了自然頻率、阻尼比及模態振形,而一般模態參數識別法通常需同時利用激勵及響應資料來識別模態參數。許多工程結構在環境振動作用下,僅能獲得其響應資料,因此無需激勵信號的量測而直接由響應資料識別模態參數,是為本文重點。本文針對隨機遞減法樣本擷取標準提出改良方法,使得在有限的時域訊號內,可得到更多訊號樣本數;並考慮激勵信號為零均值之非定常過程,其響應信號經改良隨機遞減法處理後與脈衝響應或自由振動衰減響應有相同的數學形式,進而利用Ibrahim時域模態參數識別法進行模態參數的識別。由數值模擬結果顯示,在非定常環境振動情況下,本文所提出之分析方法可得良好的模態參數識別結果。

    Dynamical features of a structural system can be characterized by its modal parameters, which include natural frequencies, damping ratios and mode shapes. Identification of system characteristics is usually accomplished using both input and output data from the structural system. In many cases, only output measurements are available for structures under ambient vibration conditions. How to use the output data to identify the modal parameters is the key point of this thesis. The objective of this thesis is to modify the sampling method of the random decrement technique in order to obtain more samples from limited time-domain data. If the input can be modeled as a zero-mean non-stationary process, it is shown that the modified random decrement vibration signatures of the response of a linear structure are in the same mathematical form as free vibration of the structure. Furthermore, the Ibrahim time-domain method is employed as the modal identification scheme to extract modal parameters from vibration data. Through numerical simulation, the effectiveness of the proposed method of modal parameter identification from non-stationary ambient vibration data is demonstrated.

    口試合格證明 Ⅰ 中文摘要 Ⅱ 英文摘要 Ⅲ 誌謝 Ⅳ 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 引言 1 1-2 系統識別與模態分析 3 1-3 文獻回顧 4 1-4 研究目的及方法 7 1-5 論文架構 8 第二章 利用環境響應資料之模態參數識別 9 2-1 引言 9 2-2 受定常白訊激勵信號隨機遞減法之理論 10 2-3 受非定常白訊激勵信號隨機遞減法之理論 15 2-4 改良隨機遞減法理論推導 17 第三章 時域法模態參數識別理論 21 3-1 引言 21 3-2 Ibrahim 時域法 22 3-3 模態可信度(Modal Assurance Criterion, MAC) 29 第四章 數值模擬結果與討論 31 4-1 引言 31 4-2 隨機外力過程的模擬 31 4-3 鏈模型之模態參數識別 34 第五章 結論 38 參考文獻 40

    [1] Ang, A. H-S. and Tang, W.H., “Probability Concepts in Engineering Planning and Design”, Vol. 1, 1975.
    [2] Asmussen, J.C., Ibrahim, S. R. and R. Brincker, “Random Decrement and Regression Analysis of Bridges Traffic Responses”, Proceedings of the 14th International Model Analysis Conference, Vol. 1, 1996, pp. 453-458.
    [3] Bathe, K. J., “Finite Element Procedures in Engineering Analysis”, Prentic-Hall, 1982.
    [4] Beck, J. L. and Jennings, P. C., “Structural Identification Using Linear Models and Earthquake Records”, Earthquake Engineering and Structural Dynamics, Vol. 8, 1980, pp. 145-160.
    [5] Beck, J. L., “Determining Models of Structures from Earthquake Records”, Report No. EERL 78-01, California Institute of Technology, Pasadena, 1978.
    [6] Bedewi, N.E., “The Mathematical Foundation of the Auto and Cross-random Decrement Techniques and the Development of a System Identification Technique for the Detection of Structural Deterioration”, Ph. D Thesis, University of Maryland College Park, 1986.
    [7] Bendat, J.S. and Piersol, A.G., “Random Data: Analysis and Measurement Procedures”, John Wiley, New York, 1971.
    [8] Carne, T. G., Lauffer, J. P., Gomez, A. J. and Benjannet, H. “Modal Testing an Immense Flexible Structure Using Natural and Artificial Excitation”, The International Joural of Analytical and Experimental Modal Analysis, The Society of Experimental Mechanics, October 1988, pp. 117-122.
    [9] Chiang D.Y and Cheng M.S. “Modal Parameter Identification from Ambient Response”, 1999, AIAA Journal, Vol. 37, pp.513-515.
    [10] Code, H. A. Jr., “Methods and Apparatus for Measuring the Damping Characteristics of a Structures by the Random Decrement Technique”, United States Patent No. 3, 1971.
    [11] Davis, W.R. and Bucciarelli, L.L, “Non-stationary Spectral Analysis for Linear Dynamic System”, AIAA Journal, Vol. 13, No. 1, 1975, pp. 543-545.
    [12] Deblauwe, R., Brown, D. L., and Allemang, R. J., “The Poly reference Time Domain Technique”, Proceedings 5th Int. Modal Analysis Conference, Orlando, Fla., 1987, pp. 832-845.
    [13] Ewins, D. J., “Modal Testing: Theory and Practice”, Research Studies Press, 1984.
    [14] Ibrahim, S. R. , Brincker, R. and Asmussen, J. C., “Modal Parameter Identification from Responses of General Unknown Random Inputs”, Proceedings of the 14th International Model Analysis Conference, Vol. 1, 1996, pp. 446-452.
    [15] Ibrahim, S. R. and Mikulcik, E. C., “A Method for the Direst Identification of Vibration Parameters from Free Response”, Shock and Vibration Bulletin, Vol. 47, Pt. 4, Sept. 1977, pp. 183-198.
    [16] Ibrahim, S. R. and Mikulcik, E. C., “The Experimental Determination of Vibration Parameters from Time Responses”, Shock and Vibration Bulletin, Vol. 46, Pt. 5, Aug. 1976, pp. 183-198.
    [17] Ibrahim, S. R. and Pappa, R. S., “ Large Survey Testing Using the Ibrahim Time Domain (ITD) Model Identification Algorithm, ”Journal of Spacecraft and Rockets, Vol. 19, Sept.-Oct. 1982, pp.459-465.
    [18] Ibrahim, S. R., “Random Decrement Technique for Modal Identification of Structures”, Journal of Spacecraft and Rockets, Vol. 140, Nov. 1977, pp. 696-700.
    [19] Ibrahim, S. R., Asmussen, J. C. and Brincker, R., “Statistical Theory of the Vector Random Decrement Technique”, Journal of Sound and Vibration, Vol. 226, 1999, pp. 329-344.
    [20] Ibrahim, S. R., Asmussen, J. C. and Brincker, R., “ Vector Triggering Random Decrement Technique for Higher Identification Accuracy”, Proceedings of the 15th International Model Analysis Conference, Vol. 1, 1997, pp. 502-509.
    [21] James, G. H., Carne. T. G. and Lauffer, J. P.,“ The Natural Excitation Technique for Modal Parameter Extraction from Operating Wind Yurbines” SAND92-1666. UC-261, Sandia National Laboratories, 1993.
    [22] Juang, J, -N. and Pappa, R .S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction”, Jounal of Guidance and Control Dynamics, AIAA, Vol.8, No. 5, 1985, pp. 620-627.
    [23] Juang, J, -N., Cooper, J. E. and Wright, J. R., “An Eigensystem Realization Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identification”, Control-Theory and Advanced Technology, Vol. 4, No. 1, 1988, pp. 5-14.
    [24] Kennedy, S. R. and Pancu, C. D. P. “Use of Vectors in Vibration Measurement and Analysis”, Journal of Aeronautics Sciences, Vol.14, No. 11, 1974, pp. 603-625.
    [25] Ku, C. J., Cermak J. E., and Chou, L. S., “Random Decrement Based Method for Modal Parameter Identification of A Dynamic System using Acceleration Responses”, Journal of Wind Engineering and Industrial Aerodynamics, 2007, pp. 389–410.
    [26] Lin, Y. K., “Probabilitstic Theory of Structural Dynamics”, McGraw-Hill, New York, 1967.
    [27] Newland, D.E., “An Introduction to Random Vibrations and Spectral Analysis”, 1975.
    [28] Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis Via State Space,” Transactions ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 107, 1985, pp. 132-137.
    [29] Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis, Part I: Theory”, Journal of Sound and Vibration, Vol. 122, No. 3, 1988, pp. 413-422.
    [30] Pandit, S. M. and Wu, S. M., “Time Series and System Analysis with Applications”, John Wiley & Sons, Inc., New York, 1983.
    [31] Pappa, R. S. and Ibrahim, S. R., “A Parametric Study of Ibrahim Time Domain Modal Analysis”, Shock and Vibration Bulletin, Vol.51, Pt. 3, 1981, pp. 43-72.
    [32] Shen, F., Zheng, M., Feng Shi, D. and Xu, F., “Using the Cross-correlation Technique to Extract Modal Parameter on Response-only data”, Journal of Sound and Vibration Vol. 259, No. 5, 2003, pp. 1163–1179.
    [33] Shinozuka, M., “Random Process with Evolutionary Power”, J. Eng. Mech. Div., ASCE, Vol. 96, EM4, 1970, pp. 543-545.
    [34] Shinozuka, M., “Simulation of Multivariate and Multidimensional Random Processes”, Journal of the Acoustical Society of America, Vol. 49, No. 1. 1971, pp. 357-367.
    [35] Vandiver, J. K., Dunwoody, A. B., Campbell, R. B. and Cook, M. F., “A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique”, Journal of Mechanical Design, Vol. 104, 1982.
    [36] Vold, H. and Rocklin, G. F. “The Numerical Implementation of a Multi-Input Modal Estimation Method for Mini-Computers”, International Modal Analysis Conference Proceedings, Nov. 1982.
    [37] 林文祺、黃群堯、王傑兒, “鋼筋混凝土樑損壞之識別”, 結構工程, Vo1. 13, No. 4, 1998, pp. 19-39.
    [38] 林其璋、高雍超、王哲夫, “應用部份量測反應之結構系統識別”, 中國土木水利工程學刊, Vo1. 7, No. 3, 1995, pp. 307-316.
    [39] 曹松華, “隨機遞減法於非定常環境振動模態參數識別之應用”, 碩士論文, 國立成功大學航空太空工程學研究所, 2004.
    [40] 黃炯憲、葉錦勳、林憲忠、葉公贊, “隨機遞減法在微震量測之應用-比例阻尼系統”, 國家地震工程研究中心研究報告編號:NCREE-96-013, 1996.
    [41] 詹啟鋒, “受環境振動之系統參數識別”, 碩士論文, 國立成功大學航空太空工程學研究所, 2000.
    [42] 鄭銘勢, “時域模態參數識別法之應用”, 碩士論文, 國立成功大學航空太空工程學研究所, 1997.

    下載圖示 校內:2012-07-25公開
    校外:2012-07-25公開
    QR CODE