| 研究生: |
黃佳琪 Huang, Chia-Chi |
|---|---|
| 論文名稱: |
以磷脂質修飾之奈米磁性材料之製備與性質鑑定 Preparation and characterization of phospholipids modified nano magnetic particles |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 氧化鐵 、微脂粒 、磁性微脂粒 |
| 外文關鍵詞: | liposome, magnetic, magnetic liposome |
| 相關次數: | 點閱:69 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米生物技術影響生物醫學的發展,而近幾年來最受矚目的潛在應用乃是以磷脂質 (phospholipids) 包覆磁性奈米鐵,在外加磁場下,配合熱治療 (hyperthermia) 的方式來抑制癌細胞。而微脂粒 (liposome) 所形成之微胞 (vesicle) 亦具有包覆藥物之機制。因此,此類材料對於癌細胞處理相當具有醫學上的研究價值。
本研究即針對此項材料進行製備與探討。對於磁性奈米顆粒是以共沉澱法進行製備,得到具磁性之奈米氧化鐵 (Fe3O4),由穿透式電子顯微鏡估算之顆粒粒徑約在 11 nm。再經由磷脂質(1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) 修飾 Fe3O4,可觀測到分散性良好的磁性奈米氧化鐵,所測得之粒徑均約為 10 nm,且可以利用 X-ray (311) 特性峰計算出奈米氧化鐵和經過 DPPC 修飾的氧化鐵,所得的平均微晶尺寸 (average crystalline size) 各為 18.3 和 17.7 nm。使用熱重損失分析儀 (TGA)、能量散佈儀 (EDS) 可以確定添加之分散劑含量和組成,並經由傅立葉轉換紅外線光譜儀 (FT-IR) 在 2878 和 2984 cm-1 顯示之特徵峰來確定分散劑在磁性鐵表面之情形。利用超導量子干涉儀 (SQUID) 則可以確定磁性奈米粒子和利用 DPPC 修飾的磁性粒子飽和磁化量各為 71.2 和 65.6 emu/g。
對於磁性奈米鐵之包覆是選用薄膜水合法。經由穿透式電子顯微鏡觀察,可以觀測到磷脂質具有包覆修飾過後的Fe3O4。而為了維持微脂粒的穩定性以及黏滯性,故進一步添加特殊官能基在脂質表面上,據文獻指出將聚乙烯二醇 (polyethylene glycol, PEG) 與磷脂醯乙醇胺 (phosphoethanolamine, PE) 結合成酯 (PEG-PE),會延長微脂粒在血液中之循環時間,並形成立體障礙而避免陷入內皮網狀組織中。於實驗中先將 PEG2000 與 N,N-羰基二咪唑 (N,N'-carbonyldiimidazole, CDI) 進行反應,由 FT-IR 鑑定在 1743 cm-1 有酯類官能基,核磁共振儀 (NMR) 在7-9 ppm 處之化學位移,可推測是咪唑上有三個氫結構;再將 1,2-dimytistoyl-sn-glycerol-3-phosphoethanolamine, DMPE) 與上述步驟形成之產物反應生成 PEG2000-DMPE,經由 FT-IR初步證實在 1735 cm-1 有強的酯類官能基吸收。再以NMR 分析,最主要的 PEG2000 含量是由 PEG 的乙烯質子峰對應膽鹼 (choline) 甲基質子峰的強度比例來估測,與結構是相當符合的。且經過表面修飾的微脂粒,利用 TEM 也可以觀測出其具有包覆磁性奈米鐵的能力。將微脂粒和經過 PEG2000-DMPE 修飾的微脂粒以及包覆磁性材料的微脂粒,利用示差掃描熱分析儀 (DSC) 進行物性探討。
Nano-biotechnonlogy has improved developments of biomedicine. Recently, magnetic liposome has attracted a lot of attentions because of their potential as heating mediator for cancer cell (hyperthermia). Liposome is a hollow vesicle, which can be used as a carrier for medicine entrapment , thus the functions of this material for cancer cell have quite lots of researching value.
In this study, we choose this material to prepare and discuss the structure of magnetic liposome. Magnetic nanoparticles were synthesized by co-precipitation. The size of the Fe3O4 nanoparticles is about 11 nm observed by transmission electron microscopy (TEM). Iron oxide nanoparticles coated with phospholipids (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) could be much better dispersed in solution with the average size of 10 nm. And the average crystalline sizes determined by the characteristic peaks of the X-ray diffraction (XRD) at (311) were 18.3 and 17.7 nm. Thermogravimetric analysis (TGA) and energy dispersive spectrometer (EDS) confirmed the amount and ingredient and the characteristic peaks of fourier transform infrared spectro-photometer (FT-IR) spectra also confirm the presence of the surfactant on the magnetite surface, and the FT-IR spectra of the surfactant coated magnetite as well as in the DPPC sample consist of the bands at 2878 and 2984 cm-1. Finally, the results of sperconductor quantum interference device (SQUID) indicated the saturation magnetization of the Fe3O4 and DPPC coated Fe3O4 nanoparticles that are 71.2 and 65.6 emu/g.
The magnetic liposome was prepared by thin film-hydration method. TEM images of magnetic liposome are observed. In order to keep stability and dense of liposome, lipid has been modified with a specific targeting functional group. Some literatures indicate that by the reaction of polyethylene glycol (PEG) and phosphoethanolzmine (PE) to the derivative of ester (PEG-PE), which could prolong the blood circulation time of liposome and avoid the uptake by reticuloendothelial system (RES). In our first protocol step, we mixed PEG2000 and N,N’-carbonyldiimidazole (N,N’-CDI) for ring-opening reaction, then FT-IR can confirm ester functional group at 1743 cm-1, NMR data indicate that the imidazole cyclostructure has three hydrogen atoms with a 7-9 ppm chemical shift. Then mixing 1,2-dimytistoyl-sn-glycerol-3-phosphoethanolamune (DMPE) with the first step product to synthesis PEG2000-DMPE. FT-IR can confirm strong ester functional group at 1735 cm-1. NMR data show the PEG2000 content was estimated from the ratio of the intensity of the PEG2000 ethylene proton peak to that of the choline methyl proton peak. From our experimental results, we can make sure that the preparation is plausible. Besides, by TEM images we have observed that the liposome modified with PEG has tha ability to entrap magnetic nanoparticles.
Finally, differential scanning calorimeter (DSC) was applied to measure physical properties of liposome and modified liposome with or without entrapped magnetic nanoparticles.
1. T. Nakaya and Y. J. Li, “Phospholipid polymers-review article”, Prog.Poly.Sci., Vol. 24, pp. 143-181, 1999
2. M. N. Jones, “The surface properties of phospholipid liposome system and their characterisation”, Adv. Colloid Interface Sci., Vol.54, pp.93-138, 1995
3. H.S. Nalwa, “Preparation of Vesicles (Liposomes)”, Encyclopedia of Nanoscience and Nanotechnology, Vol. 9, pp.43-79, 2004
4. S.M. Gruner, “Novel Multilayered Lipid Vesicles: Comparison of Physical Characteristics of Multulamellar Liposomes and Stable Plurilamellar Vesicles”, Biochemistry, Vol.24, pp.2833-2842, 1985
5. W.W. Sułkowski, D. Pentak, K. Nowak and A. Sułkowska, “The inference of temperature, cholesterol content and pH on liposome stability”, J. Mol Struct., Vol.744-747, pp.737-747, 2005
6. V. P. Torchilin , Liposome practical approach, Weissig Volkmar, Oxford, 2003
7. J. Sabin, G. Prieto, Paula V. Messina, Juan M. Ruso, R. H-Alvarez and F. Sarmiento, “On the Effect of Ca2+ and La3+ on the Colloidal Stability of Liposomes”, Langumir, Vol.21, pp.10968-10975, 2005
8. F. J. Carrion, A. Delamaza and J. L. Parra, “The influence of ionic strength and lipid bilayer charge on the stability of liposomes”, J.Colloid Interf Sci., Vol.164, pp.78-87, 1994
9. K. Kostarelos, T-F. Tadros, and P. F. Luckham, “Physical conjugation of (Tri-) Block Copolymers to liposomes toward the construction of sterically stabilized vesicle systems”, Langmuir, Vol.15, pp.369-376, 1999
10. G. Cevc and H. Richardsen, “Lipid vesicles and membrane fusion”, Adv. Drug Deliv. Rev., Vol.38, pp.207-232, 1999
11. M. Hodenius, M. D. Cuyper, L. Desender, D. M-Schulte, A. Steugle, H. Lueken, “Biotinylated stealth® magnetoliposomes”, Chemistry and Physics of Lipids, Vol.120, pp.75-85, 2002
12. M-C. Woodle, “Controlling liposome blood clearance by surface-grafted polymer ”, Adv. Drug Deliv. Rev.,Vol.32, pp.139-152, 1998
13. A. Yoshida, K. Hashizaki, H. Yamauchi, S. Yokoyam and M. Abe, “Effect of lipid with covalently attached poly(ethylene glycol) on the surface properties of liposome bilayer membranes ”, Langmuir, Vol.15, pp.2333-2337, 1999
14. K. Hashizaki, H. Taguchi, C. Itoh, H. Sakai, M. Abe, Y. Saito and N. Ogawa, “Effect of poly(ethyl glycol) (PEG) concentration on the permeability of PEG-grafted liposomes”, Chem. Pharm. Bull., Vol.53, pp.27-37, 2005
15. K. Hashizaki, H. Taguchi, C. Itoh, H. Sakai, M. Abe, Y. Saito and N. Ogawa, “Effect of poly(ethyl glycol) (PEG) chain length of PEG-lipid on the permeability of liposomal bilayer membranes”, Chem. Pharm. Bull., Vol.51, pp.815-820, 2003
16. S. Zalipsky, “Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes”, Bioconjugate Chem., Vol.4, pp.296-299, 1993
17. V. King, M. Parker and K-P. Howard, “Pegylation of mangentically oriented lipid bilayers”, J. Magn. Reson., Vol.142, pp.177-182, 2000
18. H. Yoshioka, “Surface modification of haemoglobin-containing liposomew with polyethylene glycol prevents liposome aggregtion in blood plasma”, Biomaterials, Vol.12, pp.861-864, 1991
19. A-F. Thunemann, D. Schutt, L. Kaufner, U. Pison and H, Mohwald, “Maghemite nanoparticles protectively coat with Poly(ethylene imine) and Poly(ethylene oxide)-block-poly-(glutamic acid)”, Langmuir, Vol.22, pp.2351-2357, 2006
20. D-L. L-Pelecky and R-D. Rieke, “Magnetic properties of nanostructured materials”, Chem. Mater., Vol.8, pp.1770-1783, 1996
21. A. Ito, M. Shinkai, H. Honda and T. Kobayasi, “Medical application of functionalized magnetic nanoparticles”, J. Bios. Bioeng., Vol.100, pp.1-11, 2005
22. M. Ma, Y. Zhang, W. Yu, H-y. Shen, H-q. Zhang and N. Gu, “Preparation and characterization of magnetite nanoparticles coated by amino saline ”, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol.212, pp.219-226, 2003
23. T. Kim, L. Reis, K. Rajan and M. Shima, “Magnetic behavior of iron oxide nanoparticle-biomolecule assembly ”, J. Magn. Magn. Mater, Vol.295, pp.132-138, 2005
24. M-D. Cuyper, P. Müller, H. Lueken and M. Hodenlus, “Synthesis of magnetic Fe3O4 particles covered with a modifiable phospholipid coat”, J. Phys.: Condens. Matter, Vol.15, pp.1425-1436, 2003
25. Y-K. Sun, M. Ma, Y. Zhang, N. Gu, “Synthesis of nanometer-size maghemite particles for from magnetite ”, Colloids and Surfaces A: Physicochem. Eng., Vol.245, pp.15-19, 2004
26. C-L. Lin, C-F. Lee, W-Y. Chiu, “Preparation and properties of poly(acrylic acid) oligomer stabilized”, J. Colloid Interface Sci., Vol.291, pp.411-420, 2005
27. Y-S. Kang, S. Risbud, J-F. Rabolt and P. Stroeve, “Synthesis and characterization of nanpmeter-size Fe3O4 and r-Fe2O3 particles”, Chem. Mater., Vol.8, pp.2209-2211, 1996
28. R. Massart, “Preparation of aqueous magnetic liquids in alkaline and acidic media”, IEEE Trans. Magn., Vol.17, pp.1247-1248, 1981
29. R. Massart, E. Dubois, V. Cabuil and E. Hasmonay, “Preparation and properties of monodisperse magnetic fluids”, J. Magn. Magn. Mater, Vol.149, pp.1-5, 1995
30. R. A. Williams Colloid and surface engineering: applications in the process industries, B-H Ltd, Oxford, 1992
31. M. D. Cuyper, B. D. Meulenaer, P. V-d. Meeren and J. Vanderdeelen, “Catalytic durability of magnetoproteoliposomes captured high-gradient magnetic force in a miniature fixed-bed reactor”, Biotechnol. Bioeng., Vol.49, pp.654-658, 1996
32. M. D. Cuyper, M. Joniau, “Mechanistic aspects of the adsorption of phospholipids onto lauric acid stabilized Fe3O4 nanocolloids”, Langmuir, Vol.7, pp.647-652, 1991
33. C. Menager, V. Cabuil, “Synthesis of magnetic liposomes”, J.Colloid Interf Sci., Vol.169, pp.251-253, 1995
34. T. Nawroth, M. Rusp and R-P. May, “Magnetic liposomes and entrapping : time-resolved neutron scatting TR-SANS and electron microscopy”, Physica B, Vol.350, pp.635-638, 2004
35. K. Hirao, T. Sugita, T. Kubo, K. Igarashi, K. Tanimoto, T. Murakami, Y. Yasunaga and M. Ochi, “Targeted gene delivery to human osteosarcoma cells with magnetic cationic liposomes under a magnetic field”, Int. J. Oncol., Vol.22, pp.1065-1071, 2003
36. D-C. F. Chan, D-B. Kirpotin, P.A. Bunn, “Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer”, J. Magn. Magn. Mater, Vol.122, pp.374-378, 1993
37. S. Wada, L. Yue, K. Tazawa, I. Furuta, H. Nagae, S. Takemori and T. Minamimura, “New local hyperthermia using dextran magnetite complex (DM) for oral cavity: experimental study in normal hamster tongue”, Oral Dis., Vol.7, pp.192-195, 2001
38. S. Wan, J. Huang, H. Yan and K. Liu, “Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers”, J. Mater. Chem., Vol.16, pp.198-303, 2006
39. J. Giri, S. G. Thakurta, J. Bellare, A. K. Nigam and D. Bahadur, “Preparation and characterization of phospholipids stabilized uniform sized magnetite nanoparticles”, J. Magn. Magn. Mater, Vol.293, pp.62-68, 2005
40. D. Caruntu, G. Caruntu, Y. Chen, C-J. O’Connor, G. Goloverda and V-L. Kolesnichenko, “Synthesis of variable-sized nanocrystals of Fe3O4 with high surface reactivity”, Chem. Mater., Vol.16, pp.5527-5534, 2004
41. S-Y. Zhao, D. K. Lee, C. W. Kim, H. G. Cha, Y. H. Kim and Y. S. Kang, “Synthesis of magnetic nanoparticles of Fe3O4 and CoFe2O4 and their surface modification by surfactant adsorption”, Bull. Korean Chem. Soc., Vol. 27, pp.237-242, 2006
42. A.Taylor, X-Ray Metallography, Wiley, New York, 1961, p.674
43. J. Giri, T. Sriharsha and D. Bahadur, “Optmization of parameters for the synthesis nano-sized Co1-xZnxFe2O4, (0 ≤ X ≤ 0.8) by microwave refluxing”, J. Mater. Chem., Vol.14, pp.875-880, 2004
44. V-P. Torchilin and V-S. Trubetskoy, “Which polymers can make nanoparticulate drug carriers long-circulating?”, Adv. Drug Deliv. Rev., Vol.16, pp.141-155, 1995
45. G. Battaglia and A-J. Ryan, “Bilayers and interdigitation in block copolymer vesicles”, J. Am. Chem. Soc., Vol.127, pp.8757-8764, 2005
46. S. Kazakov, M. Kaholek, I. Teraoka and K. Levon, “UV-Induced gelation on nanometer scale using liposome reactor”, Macromolecules, Vol.35, pp.1911-1920, 2002
47. F-Q. Zhao and R. Craig, “Capturing time-resolved changes in molecular structure by negative staining”, J. Struct. Biol., Vol.141, pp.43-52, 2003
48. G. Battaglia and A-J. Ryan, “Bilayers and interdigitation in block copolymer vesicles”, J. Am. Chem. Soc., Vol.127, pp.8757-8764, 2005
49. S. Kazakov, M. Kaholek, I. Teraoka and K. Levon, “UV-Induced gelation on nanometer scale using liposome reactor”, Macromolecules, Vol.35, pp.1911-1920, 2002
50. M. Yanase, M. Shinkai, H. Honda, T. Wakabayshi, J. Yoshida and T. Kobayashi, “Intracellular hyperthermia for cancer using magnetite cationic liposomes : Ex vivo study”, Jpn. J. Cancer Res, Vol.88, pp.630-632, 1997