| 研究生: |
譚家彥 Tan, Chia-Yen |
|---|---|
| 論文名稱: |
添加經表面修飾之多壁奈米碳管觸媒對複合金屬氫化物放氫行為的影響研究 Effects of Surface Decorated MWCNTs on the Dehydrogenation Behavior of Complex Metal Hydride |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 170 |
| 中文關鍵詞: | 複合金屬氫化物 、鋁氫化鋰 、鋁氫化鈉 、多壁奈米碳管 、化學還原法 、共沉積法 、熱重分析 、臨場同步X光繞射分析 、第一原理模擬分析 |
| 外文關鍵詞: | complex metal hydrides, LiAlH4, NaAlH4, multi-walled carbon nano tubes, chemical reduction process, impregnation process, in-situ XRD analysis, first principle simulation |
| 相關次數: | 點閱:138 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
複合金屬氫化物如鋁氫化鋰(LiAlH4)與鋁氫化鈉(NaAlH4)具有高理論重量氫儲存密度,釋出氫氣純度高,具有作為車載燃料電池氫氣來源使用的潛力,然而因為其分解放氫溫度仍高達170-300 oC,不方便正常操作。故本研究致力於開發奈米過渡金屬顆粒與三氯化鈦批覆修飾之多壁奈米碳管,作為催化複合金屬氫化物放氫反應的觸媒,並探討觸媒對複合金屬氫化物如鋁氫化鋰與鋁氫化鈉的放氫反應影響。研究首先透過化學還原法使過渡金屬顆粒如鎳、鈷、銅、釩、鉑、鈀能夠批覆於多壁奈米碳管上,以及共沉積法製備三氯化鈦混合多壁奈米碳管的複合觸媒。觸媒製備完成後,以掃描式電子顯微鏡、電子能譜分析儀與穿透式電子顯微鏡觀察觸媒附著於多壁奈米碳管上的表面形貌。製備好的過渡金屬披覆多壁奈米碳管觸媒以球磨法混合不同比例添加於鋁氫化鋰與鋁氫化鈉中。混合的粉體以穿透式X光顯微術對金屬披覆多壁奈米碳管觸媒混合於鋁氫化鋰中的粉體進行微觀觀察。而在放氫性質部分使用熱重分析儀分析其放氫性質,並配合臨場同步X光繞射法,了解觸媒在複合金屬氫化物放氫過程中是否參與反應。
實驗結果顯示,多壁奈米碳管本身即具有催化鋁氫化鋰放氫反應的效果。經過添加20 wt%的多壁奈米碳管後,鋁氫化鋰的初始放氫溫度由170 oC降低至140 oC。而若以不同金屬修飾多壁奈米碳管,可有不同程度的提升或抑制多壁奈米碳管催化能力的效果。其中,三氯化鈦以及鎳金屬披覆之多壁奈米碳管,其催化效果提升最為顯著。添加20 wt%的三氯化鈦披覆多壁奈米碳管,以及鎳金屬披覆多壁奈米碳管,可有效降低鋁氫化鋰的初始放氫溫度至70 oC,並大幅提高在恆溫100 oC下的放氫速率。而同步輻射X光繞射結果顯示,三氯化鈦披覆多壁奈米碳管以及鎳金屬披覆多壁奈米碳管雖然可以有效降低鋁氫化鋰的放氫溫度,但卻不會影響其放氫反應路徑。X光繞射結果亦顯示,三氯化鈦與鎳批覆之多壁奈米碳管觸媒以球磨法添加於鋁氫化鋰後,其混合粉體在室溫下即會有緩步分解釋氫的現象,同樣驗證了三氯化鈦與鎳批覆之多壁奈米碳管觸媒對鋁氫化鋰優異的催化效果。
而在鉑或鈀金屬披覆之多壁奈米碳管觸媒部分,熱重分析結果顯示添加鉑或鈀金屬披覆之多壁奈米碳管觸媒於鋁氫化鋰中,同時具有催化與抑制鋁氫化鋰放氫反應的效果。熱重分析與傅立葉紅外光譜顯示,由於鉑或鈀金屬披覆之多壁奈米碳管觸媒具有優異的吸附氫氣能力,添加於鋁氫化鋰中會將其所釋放的氫氣暫時吸附於觸媒上,造成氫氣釋放的延遲狀況。而同步輻射X光繞射結果顯示,鉑與鈀金屬觸媒在高溫下會與第一階段放氫後的產物產生反應,導致其反應路徑改變而放氫量有所不同。詳細的數據解釋會在本文中討論。
在鋁氫化鈉部分,過渡金屬披覆之多壁奈米碳管觸媒亦有類似於添加在鋁氫化鋰中的催化效果。熱重分析結果顯示,三氯化鈦與鎳金屬披覆之多壁奈米碳管觸媒同樣對鋁氫化鈉擁有較佳的催化效果,添加20 wt% 三氯化鈦與鎳金屬披覆之多壁奈米碳管觸媒可分別將鋁氫化鈉的起始放氫溫度由210 oC 降低至150 oC與170 oC,並提高鋁氫化鈉在160 oC下的放氫速率。而鉑與鈀披覆之多壁奈米碳管觸媒添加則同樣對鋁氫化鈉有抑制其釋氫的效果,導致熱重分析結果中鋁氫化鈉的起始放氫溫度些微增加至220 oC。
除了以熱重分析與同步輻射X光繞射實驗了解過渡金屬披覆多壁奈米碳管觸媒對複合金屬氫化物放氫反應影響以外,本研究亦嘗試以第一原理模擬的方式來解釋不同過渡金屬摻雜對鋁氫化鋰晶體以及其放氫行為的影響。先前文獻指出,摻雜之過渡金屬元素容易佔據於鋁氫化鋰中的空乏區,形成間隙摻雜。而摻雜之過渡金屬元素如鈦、鎳、鈷、銅、釩其d軌域電子會與鋁原子電子軌域產生交互作用,因而弱化鋁-氫四面的鍵結強度,以及鋰離子與鋁氫四面體的鍵結強度。導致氫原子脫付能下降。第一原理模擬的結果可間接與熱重分析實驗結果相互呼應,由於附著於多壁奈米碳管上的過渡金屬顆粒對複合金屬氫化物晶體如鋁氫化鋰有不同程度的交互作用,因而解釋了不同過渡金屬元素顆粒修飾多壁奈米碳管對複合金屬氫化物會有不同程度的催化效果。
Complex metal hydride such as LiAlH4 or NaAlH4 is a promising solid hydrogen storage material that possess high volumetric hydrogen storage density up to 10.5 wt%. In addition, the purity of the released hydrogen from complex metal hydrides is high enough which makes it suitable for fuel cell in light duty vehicles. However, the onset dehydrogenation temperature of complex metal hydrides is still at the temperature around 170 to 300 oC, which is unsatisfactory for fuel cell application. Therefore, this study is dedicated on developing nano scale transition metal particles or titanium chloride (Ⅲ) decorated multi-walled carbon nanotubes (MWCNTs) as novel catalysts for improving the dehydrogenation properties of complex metal hydrides and discussing its effect on dehydrogenation reaction of complex metal hydrides.
First, by chemical reduction and impregnation process, the transition metal particles such as Ni, Co, Cu, and V, noble metal such as Pt, Pd and TiCl3 compounds were able to decorate on the surface of MWCNTs. The morphology and chemical composition of the surface decorated MWCNTs was examined by using scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS). The different percentage of the as prepared surface decorated MWCNTs were admixed with complex metal hydrides such as LiAlH4 or NaAlH4 by ball milling process. The morphology of the admixed powders was examined by transmission X-ray microscopy (TXM). The dehydrogenation properties of the surface decorated MWCNTs admixed LiAlH4 or NaAlH4 was investigated by using thermo-gravimetric analysis (TGA) and the in-situ X-ray diffraction (in-situ XRD) in order to understand whether the catalysts would alter the dehydrogenation reaction.
For LiAlH4, the TGA results showed that the addition of 20 wt% pure MWCNTs could lower the onset dehydrogenation temperature of LiAlH4 from 170 oC to 140 oC. In addition, by decorating different transition metal particles, the catalytic power of MWCNTs could be improved or deteriorated accorded to the decorated transition metal element. Among all the tested catalysts, the TiCl3 or Ni decorated MWCNTs have superior catalytic power in catalyzing the dehydrogenation of LiAlH4. By addition of 20 wt% TiCl3 or Ni decorated MWCNTs, the onset dehydrogenation temperature of LiAlH4 could be reduced to as low as 70 oC. Meanwhile, the hydrogen desorption kinetic of LiAlH4 at 100 oC was significantly improved. Although the TiCl3 or Ni decorated MWCNTs could effectively lower the dehydrogenation temperature of LiAlH4, the in-situ XRD analysis showed that the TiCl3 or Ni decorated MWCNTs catalysts would not alter the dehydrogenation reaction pathways of LiAlH4. Meanwhile, the XRD results implied that the TiCl3 or Ni decorated MWCNTs admixed LiAlH4 would gradually decompose at room temperature, which also verified the superior catalytic power of TiCl3 or Ni decorated MWCNTs.
On the other hand, the Pt or Pd decorated MWCNTs exhibited both catalytic and inhibitive effect on the dehydrogenation of LiAlH4. The TGA and FTIR results revealed the superior capability of Pt or Pd decorated MWCNTs to absorb hydrogen under hydrogen atmosphere. Addition of Pt or Pd decorated MWCNTs could absorb the hydrogen released from the LiAlH4, therefore delaying the hydrogen desorption rate during the TGA tests. Meanwhile, the in-situ XRD analysis showed that Pt and Pd particles would react with the residue of dehydrogenation reaction of LiAlH4 and therefore altering its dehydrogenation reaction pathways. The detailed data would be discussed later in this thesis.
For NaAlH4, the effect of surface decorated MWCNTs on NaAlH4 is similar to that on LiAlH4. The TGA results showed that addition of TiCl3 and Ni decorated MWCNTs could lower the onset dehydrogenation temperature from 210 oC to 150 and 170 oC. At the same time, the hydrogen desorption kinetic of NaAlH4 at 160 oC was significantly improved by addition of TiCl3 and Ni decorated MWCNTs addition. On the other hand, the Pt and Pd decorated MWCNTs also exhibited the inhibitive effect on hydrogen desorption of NaAlH4, where the onset dehydrogenation temperature of NaAlH4 increased slightly from 210 oC to 220 oC. The detailed discussion of TGA and in-situ XRD resulted was be presented later in this thesis.
Other than TGA and in-situ XRD analysis on the effect of surface decorated MWCNTs on the dehydrogenation behavior of complex metal hydrides, the first principle simulation was also adopted in order to better understand the effect of the doping of transition metal elements on the crystal stability and the dehydrogenation behavior of LiAlH4. Previous reports implied that the doped transition metal elements such as Ti, Ni, Co, Cu, V would tend to occupy the interstitial site of LiAlH4, forming the interstitial doping. The d orbitals of doped transition metal elements would interact with the electronic orbital of Al and weaken the bonding between Aland H as well as Li+ and [AlH4]- tetrahedral. The hydrogen removal energy of transition metal doped LiAlH4 is therefore lower than the undoped LiAlH4. The simulation results could indirectly support the experiment results, where the interaction between the decorated transition metal particles on MWCNTs and the LiAlH4 is the reason to explain the different catalytic power of surface decorated MWCNTs.
1. Raich, J.W. and W.H. Schlesinger, THE GLOBAL CARBON-DIOXIDE FLUX IN SOIL RESPIRATION AND ITS RELATIONSHIP TO VEGETATION AND CLIMATE. Tellus Series B-Chemical and Physical Meteorology, 1992. 44(2): p. 81-99.
2. Cox, P.M., et al., Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000. 408(6809): p. 184-187.
3. Zachos, J., et al., Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001. 292(5517): p. 686-693.
4. Zuttel, A., et al., Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2010. 368(1923): p. 3329-3342.
5. Zuttel, A., Hydrogen storage methods. Naturwissenschaften, 2004. 91(4): p. 157-172.
6. US Department of Energy (2009, September), “Targets for onboard hydrogen storage systems for light-duty vehicles”, Retrieved May 10, 2012, from http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf.
7. Ritter, J.A., et al., Implementing a hydrogen economy. Materials Today, 2003. 6(9): p. 18-23.
8. Züttel, A., Materials for hydrogen storage. Materials Today, 2003. 6(9): p. 24-33.
9. Schuth, F., B. Bogdanovic, and M. Felderhoff, Light metal hydrides and complex hydrides for hydrogen storage. Chemical Communications, 2004(20): p. 2249-2258.
10. Chandra, D., J.J. Reilly, and R. Chellappa, Metal hydrides for vehicular applications: The state of the art. Jom, 2006. 58(2): p. 26-32.
11. Felderhoff, M., et al., Hydrogen storage: the remaining scientific and technological challenges. Physical Chemistry Chemical Physics, 2007. 9(21): p. 2643-2653.
12. Orimo, S.I., et al., Complex hydrides for hydrogen storage. Chemical Reviews, 2007. 107(10): p. 4111-4132.
13. Sakintuna, B., F. Lamari-Darkrim, and M. Hirscher, Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy, 2007. 32(9): p. 1121-1140.
14. Satyapal, S., et al., The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements. Catalysis Today, 2007. 120(3–4): p. 246-256.
15. Ashby, E.C. and P. Kobetz, The direct synthesis of Na3AlH6. Inorganic Chemistry, 1966. 5(9): p. 1615-1617.
16. Bogdanović, B., et al., Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. Journal of Alloys and Compounds, 2000. 302(1-2): p. 36-58.
17. Jensen, C.M., et al., Advanced titanium doping of sodium aluminum hydride: Segue to a practical hydrogen storage material? International Journal of Hydrogen Energy, 1999. 24(5): p. 461-465.
18. Ares, J.R., et al., Thermal and mechanically activated decomposition of LiAlH4. Materials Research Bulletin, 2008. 43(5): p. 1263-1275.
19. Balema, V.P., K.W. Dennis, and V.K. Pecharsky, Rapid solid-state transformation of tetrahedral AlH4 (-) into octahedral AlH6 (3-) in lithium aluminohydride. Chemical Communications, 2000(17): p. 1665-1666.
20. Dymova, T.N., et al., NOVEL VIEW OF THE NATURE OF THE CHEMICAL-COMPOSITION AND PHASE-COMPOSITION MODIFICATIONS IN LITHIUM HYDRIDOALUMINATES LIALH4 AND LIALH6 ON HEATING. Koordinatsionnaya Khimiya, 1995. 21(3): p. 175-182.
21. Bogdanovic, B., et al., Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. Journal of Alloys and Compounds, 2000. 302(1-2): p. 36-58.
22. Bogdanovic, B. and M. Schwickardi, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. Journal of Alloys and Compounds, 1997. 253: p. 1-9.
23. Bogdanovic, B. and M. Schwickardi, Ti-doped NaAlH4 as a hydrogen-storage material - preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction with sodium hydride. Applied Physics a-Materials Science & Processing, 2001. 72(2): p. 221-223.
24. Resan, M., et al., Effects of various catalysts on hydrogen release and uptake characteristics of LiAlH4. International Journal of Hydrogen Energy, 2005. 30(13-14): p. 1413-1416.
25. Ares Fernandez, J.R., et al., Mechanical and thermal decomposition of LiAlH4 with metal halides. International Journal of Hydrogen Energy, 2007. 32(8): p. 1033-1040.
26. Zheng, X., et al., Effects of Ti and Fe additives on hydrogen release from lithium alanate. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2008. 37(3): p. 400-403.
27. Varin, R.A. and R. Parviz, The effects of the micrometric and nanometric iron (Fe) additives on the mechanical and thermal dehydrogenation of lithium alanate (LiAlH4), its self-discharge at low temperatures and rehydrogenation. International Journal of Hydrogen Energy, 2012. 37(11): p. 9088-9102.
28. Varin, R.A., et al., The effects of nanonickel additive on the decomposition of complex metal hydride LiAlH4 (lithium alanate). International Journal of Hydrogen Energy, 2011. 36(1): p. 1167-1176.
29. Easton, D.S., J.H. Schneibel, and S.A. Speakman, Factors affecting hydrogen release from lithium alanate (LiAlH4). Journal of Alloys and Compounds, 2005. 398(1-2): p. 245-248.
30. Naik, M.u.d., et al., Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides. International Journal of Hydrogen Energy, 2009. 34(21): p. 8937-8943.
31. Liu, S.-S., et al., Improved reversible hydrogen storage of LiAlH4 by nano-sized TiH2. International Journal of Hydrogen Energy, 2013. 38(6): p. 2770-2777.
32. Rafi ud, d., et al., Catalytic effects of nano-sized TiC additions on the hydrogen storage properties of LiAlH4. Journal of Alloys and Compounds, 2010. 508(1): p. 119-128.
33. Langmi, H.W., et al., Modification of the H2 desorption properties of LiAlH 4 through doping with Ti. Journal of Physical Chemistry C, 2010. 114(23): p. 10666-10669.
34. Rafi ud, d., et al., Comparative catalytic effects of NiCl2, TiC and TiN on hydrogen storage properties of LiAlH4. Rare Metals, 2011. 30(S1): p. 27-34.
35. Liu, X., et al., Ti-doped LiAlH4 for hydrogen storage: synthesis, catalyst loading and cycling performance. J Am Chem Soc, 2011. 133(39): p. 15593-7.
36. Fu, J., et al., Comparative study on the dehydrogenation properties of TiCl4-doped LiAlH4 using different doping techniques. International Journal of Hydrogen Energy, 2012. 37(18): p. 13387-13392.
37. Liu, X., et al., Ti-doped LiAlH4 for hydrogen storage: Rehydrogenation process, reaction conditions and microstructure evolution during cycling. International Journal of Hydrogen Energy, 2012. 37(13): p. 10215-10221.
38. Wohlwend, J.L., et al., Effects of Titanium-Containing Additives on the Dehydrogenation Properties of LiAlH4: A Computational and Experimental Study. The Journal of Physical Chemistry C, 2012. 116(42): p. 22327-22335.
39. Íñiguez, J. and T. Yildirim, First-principles study of Ti-doped sodium alanate surfaces. Applied Physics Letters, 2005. 86(10): p. 103109.
40. Dathara, G.K.P. and D.S. Mainardi, Structure and dynamics of Ti–Al–H compounds in Ti-doped NaAlH4. Molecular Simulation, 2008. 34(2): p. 201-210.
41. Ismail, M., et al., Improved hydrogen desorption in lithium alanate by addition of SWCNT–metallic catalyst composite. International Journal of Hydrogen Energy, 2011. 36(5): p. 3593-3599.
42. Hsu, W.C., C.H. Yang, and W.T. Tsai, Catalytic effect of MWCNTs on the dehydrogenation behavior of LiAlH4. International Journal of Hydrogen Energy, 2014. 39(2): p. 927-933.
43. Himakumar, L., B. Viswanathan, and S. Srinivasamurthy, Dehydriding behaviour of LiAlH4LiAlH4—the catalytic role of carbon nanofibres. International Journal of Hydrogen Energy, 2008. 33(1): p. 366-373.
44. de Jongh, P.E., et al., Nanoconfined light metal hydrides for reversible hydrogen storage. MRS Bulletin, 2013. 38(06): p. 488-494.
45. Lin, S.S.Y., J. Yang, and H.H. Kung, Transition metal-decorated activated carbon catalysts for dehydrogenation of NaAlH4. International Journal of Hydrogen Energy, 2012. 37(3): p. 2737-2741.
46. Berseth, P.A., et al., Carbon Nanomaterials as Catalysts for Hydrogen Uptake and Release in NaAlH4. Nano Letters, 2009. 9(4): p. 1501-1505.
47. Yang, C.H., et al., In situ synchrotron X-ray diffraction study on the improved dehydrogenation performance of Na[AlH4]-Mg(AlH4)(2) mixture. Journal of Alloys and Compounds, 2013. 577: p. 6-10.
48. Chen, C.Y., et al., Uniform dispersion of Pd nanoparticles on carbon nanostructures using a supercritical fluid deposition technique and their catalytic performance towards hydrogen spillover. Journal of Materials Chemistry, 2011. 21(47): p. 19063-19068.
49. Tsai, P.J., et al., Enhancing hydrogen storage on carbon nanotubes via hybrid chemical etching and Pt decoration employing supercritical carbon dioxide fluid. International Journal of Hydrogen Energy, 2012. 37(8): p. 6714-6720.
50. Wang, L. and R.T. Yang, Hydrogen Storage on Carbon-Based Adsorbents and Storage at Ambient Temperature by Hydrogen Spillover. Catalysis Reviews, 2010. 52(4): p. 411-461.
51. Ronneau, C., Énergie, pollution de l’air et développement durable. 2004: Louvain-la-Neuve: Presses universitaires de Louvain.
52. Ogden, J.M., Prospects for building a hydrogen energy infrastructure. Annual Review of Energy and the Environment, 1999. 24: p. 227-279.
53. Dunn, S., Hydrogen futures: toward a sustainable energy system.International Journal of Hydrogen Energy, 2002. 27(3): p. 235-264.
54. Marbán, G. and T. Valdés-Solís, Towards the hydrogen economy? International Journal of Hydrogen Energy, 2007. 32(12): p. 1625-1637.
55. Ball, M. and M. Wietschel, The future of hydrogen – opportunities and challenges. International Journal of Hydrogen Energy, 2009. 34(2): p. 615-627.
56. Fujii, H. and S. Orimo, Hydrogen storage properties in nano-structured magnesium- and carbon-related materials. Physica B-Condensed Matter, 2003. 328(1-2): p. 77-80.
57. Hirscher, M., et al., Hydrogen storage in carbon nanostructures. Journal of Alloys and Compounds, 2002. 330–332(0): p. 654-658.
58. Ströbel, R., et al., Hydrogen storage by carbon materials. Journal of Power Sources, 2006. 159(2): p. 781-801.
59. Wang, L. and R.T. Yang, New sorbents for hydrogen storage by hydrogen spillover - a review. Energy & Environmental Science, 2008. 1(2): p. 268-279.
60. Yürüm, Y., A. Taralp, and T.N. Veziroglu, Storage of hydrogen in nanostructured carbon materials. International Journal of Hydrogen Energy, 2009. 34(9): p. 3784-3798.
61. Ma, S. and H.-C. Zhou, Gas storage in porous metal-organic frameworks for clean energy applications. Chemical Communications, 2010. 46(1): p. 44-53.
62. Rowsell, J.L. and O.M. Yaghi, Strategies for hydrogen storage in metal--organic frameworks. Angew Chem Int Ed Engl, 2005. 44(30): p. 4670-9.
63. Zhao, D., D. Yuan, and H.-C. Zhou, The current status of hydrogen storage in metal–organic frameworks. Energy & Environmental Science, 2008. 1(2): p. 222.
64. Graetz, J., New approaches to hydrogen storage. Chemical Society Reviews, 2009. 38(1): p. 73-82.
65. Holladay, J.D., et al., An overview of hydrogen production technologies. Catalysis Today, 2009. 139(4): p. 244-260.
66. Zaluski, L., A. Zaluska, and J.O. StromOlsen, Nanocrystalline metal hydrides. Journal of Alloys and Compounds, 1997. 253: p. 70-79.
67. Orimo, S.-i., et al., Complex hydrides for hydrogen storage. Chemical Reviews, 2007. 107(10): p. 4111-4132.
68. Akiba, E. and H. Iba, Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics, 1998. 6(6): p. 461-470.
69. Zaluska, A., L. Zaluski, and J.O. Strom-Olsen, Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni. Journal of Alloys and Compounds, 1999. 289(1-2): p. 197-206.
70. Sakai, T., et al., RECHARGEABLE HYDROGEN BATTERIES USING RARE-EARTH-BASED HYDROGEN STORAGE ALLOYS. Journal of Alloys and Compounds, 1992. 180: p. 37-54.
71. David, W.I.F., Effective hydrogen storage: a strategic chemistry challenge. Faraday Discussions, 2011. 151: p. 399-414.
72. Løvvik, O.M., et al., Crystal structure and thermodynamic stability of the lithium alanates ${mathrm{LiAlH}}_{4}$ and ${mathrm{Li}}_{3}{mathrm{AlH}}_{6}$. Physical Review B, 2004. 69(13): p. 134117.
73. Finholt, A.E., A.C. Bond, and H.I. Schlesinger, Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry1. Journal of the American Chemical Society, 1947. 69(5): p. 1199-1203.
74. Ashby, E.C., G.J. Brendel, and H.E. Redman, Direct Synthesis of Complex Metal Hydrides. Inorganic Chemistry, 1963. 2(3): p. 499-504.
75. Finholt, A.E., Method of making aluminum containing hydrides. 1960, Google Patents.
76. Rittmeyer, P. and U. Wietelmann, Hydrides, in Ullmann's Encyclopedia of Industrial Chemistry. 2000, Wiley-VCH Verlag GmbH & Co. KGaA.
77. Ley, M.B., et al., Complex hydrides for hydrogen storage - new perspectives. Materials Today, 2014. 17(3): p. 122-128.
78. Bogdanovic, B. and G. Sandrock, Catalyzed complex metal hydrides. Mrs Bulletin, 2002. 27(9): p. 712-716.
79. Seayad, A.M. and D.M. Antonelli, Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials. Advanced Materials, 2004. 16(9-10): p. 765-777.
80. Eberle, U., M. Felderhoff, and F. Schuth, Chemical and Physical Solutions for Hydrogen Storage. Angewandte Chemie-International Edition, 2009. 48(36): p. 6608-6630.
81. Jain, I.P., P. Jain, and A. Jain, Novel hydrogen storage materials: A review of lightweight complex hydrides. Journal of Alloys and Compounds, 2010. 503(2): p. 303-339.
82. Jena, P., Materials for Hydrogen Storage: Past, Present, and Future. Journal of Physical Chemistry Letters, 2011. 2(3): p. 206-211.
83. Berube, V., et al., Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. International Journal of Energy Research, 2007. 31(6-7): p. 637-663.
84. Vajo, J.J., et al., Thermodynamic destabilization and reaction kinetics in light metal hydride systems. Journal of Alloys and Compounds, 2007. 446–447(0): p. 409-414.
85. Cho, Y.W., J.H. Shim, and B.J. Lee, Thermal destabilization of binary and complex metal hydrides by chemical reaction: A thermodynamic analysis. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2006. 30(1): p. 65-69.
86. Nakamori, Y. and S. Orimo, Destabilization of Li-based complex hydrides. Journal of Alloys and Compounds, 2004. 370(1-2): p. 271-275.
87. Vajo, J.J., et al., Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si. Journal of Physical Chemistry B, 2004. 108(37): p. 13977-13983.
88. Walker, G.S., et al., Destabilisation of magnesium hydride by germanium as a new potential multicomponent hydrogen storage system. Chemical Communications, 2011. 47(28): p. 8001-8003.
89. Zhou, C., et al., Thermodynamic Destabilization of Magnesium Hydride Using Mg-Based Solid Solution Alloys. Journal of Physical Chemistry C, 2014. 118(22): p. 11526-11535.
90. Varin, R.A., et al., Synthesis of nanocomposite hydrides for solid-state hydrogen storage by controlled mechanical milling techniques. Journal of Alloys and Compounds, 2009. 483(1–2): p. 252-255.
91. Ismail, M., et al., The hydrogen storage properties and reaction mechanism of the MgH2–NaAlH4 composite system. International Journal of Hydrogen Energy, 2011. 36(15): p. 9045-9050.
92. Sterlin Leo Hudson, M., et al., Studies on synthesis and dehydrogenation behavior of magnesium alanate and magnesium–sodium alanate mixture. International Journal of Hydrogen Energy, 2007. 32(18): p. 4933-4938.
93. Hsu, W.C., et al., In situ synchrotron X-ray diffraction study on the dehydrogenation behavior of Li[AlH4]-MgH2 composites. Journal of Alloys and Compounds, 2014. 599: p. 164-169.
94. Zhang, Y., et al., The destabilization mechanism and de/re-hydrogenation kinetics of MgH2–LiAlH4 hydrogen storage system. Journal of Power Sources, 2008. 185(2): p. 1514-1518.
95. Adelhelm, P. and P.E. de Jongh, The impact of carbon materials on the hydrogen storage properties of light metal hydrides. Journal of Materials Chemistry, 2011. 21(8): p. 2417-2427.
96. de Jongh, P.E. and P. Adelhelm, Nanosizing and Nanoconfinement: New Strategies Towards Meeting Hydrogen Storage Goals. Chemsuschem, 2010. 3(12): p. 1332-1348.
97. Ismail, M., et al., Improved hydrogen desorption in lithium alanate by addition of SWCNT-metallic catalyst composite. International Journal of Hydrogen Energy, 2011. 36(5): p. 3593-3599.
98. Teprovich, J.A., et al., Catalytic effect of fullerene and formation of nanocomposites with complex hydrides: NaAlH4 and LiAlH4. Journal of Alloys and Compounds, 2011. 509: p. S562-S566.
99. Hudson, M.S.L., et al., Effects of helical GNF on improving the dehydrogenation behavior of LiMg(AlH4)(3) and LiAlH4. International Journal of Hydrogen Energy, 2010. 35(5): p. 2083-2090.
100. Gutowska, A., et al., Nanoscaffold Mediates Hydrogen Release and the Reactivity of Ammonia Borane. Angewandte Chemie International Edition, 2005. 44(23): p. 3578-3582.
101. Chen, T.T., C.H. Yang, and W.T. Tsai, In-situ synchrotron X-ray diffraction study on the dehydrogenation behavior of NaAlH4 modified by multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2012. 37(19): p. 14285-14291.
102. Li, L., et al., Enhanced hydrogen storage properties of TiN–LiAlH4 composite. International Journal of Hydrogen Energy, 2013. 38(9): p. 3695-3701.
103. Li, Z., et al., Significantly improved dehydrogenation of LiAlH4 destabilized by K2TiF6. International Journal of Hydrogen Energy, 2012. 37(4): p. 3261-3267.
104. Rangsunvigit, P., et al., Effects of Carbon-based Materials and Catalysts on the Hydrogen Desorption/Absorption of LiAlH4. Chemistry Letters, 2012. 41(10): p. 1368-1370.
105. Fu, J., et al., Improved dehydrogenation properties of lithium alanate (LiAlH 4) doped by low energy grinding. Journal of Alloys and Compounds, 2012. 525: p. 73-77.
106. Zuttel, A., et al., Hydrogen storage in carbon nanostructures. International Journal of Hydrogen Energy, 2002. 27(2): p. 203-212.
107. Zuttel, A., et al., Model for the hydrogen adsorption on carbon nanostructures. Applied Physics a-Materials Science & Processing, 2004. 78(7): p. 941-946.
108. Shiraishi, M., et al., Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms. Applied Physics a-Materials Science & Processing, 2004. 78(7): p. 947-953.
109. Poirier, E., et al., Storage of hydrogen on single-walled carbon nanotubes and other carbon structures. Applied Physics a-Materials Science & Processing, 2004. 78(7): p. 961-967.
110. Lueking, A.D. and R.T. Yang, Hydrogen spillover to enhance hydrogen storage - study of the effect of carbon physicochemical properties. Applied Catalysis a-General, 2004. 265(2): p. 259-268.
111. Yingwei, L. and R.T. Yang, Hydrogen storage on platinum nanoparticles doped on superactivated carbon. Journal of Physical Chemistry C, 2007. 111(29): p. 11086-94.
112. Yang, F.H., A.J. Lachawiec, and R.T. Yang, Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes. Journal of Physical Chemistry B, 2006. 110(12): p. 6236-6244.
113. Lueking, A. and R.T. Yang, Hydrogen spillover from a metal oxide catalyst onto carbon nanotubes - Implications for hydrogen storage. Journal of Catalysis, 2002. 206(1): p. 165-168.
114. Lachawiec, A.J., G.S. Qi, and R.T. Yang, Hydrogen storage in nanostructured carbons by spillover: Bridge-building enhancement. Langmuir, 2005. 21(24): p. 11418-11424.
115. Wang, L. and R.T. Yang, Hydrogen storage properties of carbons doped with ruthenium, platinum, and nickel nanoparticles. Journal of Physical Chemistry C, 2008. 112(32): p. 12486-12494.
116. Yang, R.T. and Y. Wang, Catalyzed Hydrogen Spillover for Hydrogen Storage. Journal of the American Chemical Society, 2009. 131(12): p. 4224-+.
117. Lin, K.Y., W.T. Tsai, and J.K. Chang, Decorating carbon nanotubes with Ni particles using an electroless deposition technique for hydrogen storage applications. International Journal of Hydrogen Energy, 2010. 35(14): p. 7555-7562.
118. Lin, K.Y., W.T. Tsai, and T.J. Yang, Effect of Ni nanoparticle distribution on hydrogen uptake in carbon nanotubes. Journal of Power Sources, 2011. 196(7): p. 3389-3394.
119. Mu, S.C., et al., Hydrogen storage in carbon nanotubes modified by microwave plasma etching and Pd decoration. Carbon, 2006. 44(4): p. 762-767.
120. Suttisawat, Y., et al., Investigation of hydrogen storage capacity of multi-walled carbon nanotubes deposited with Pd or V. International Journal of Hydrogen Energy, 2009. 34(16): p. 6669-6675.
121. Yang, S.J., et al., Enhanced hydrogen storage capacity of Pt-loaded CNT@MOF-5 hybrid composites. International Journal of Hydrogen Energy, 2010. 35(23): p. 13062-13067.
122. Park, S.-J. and S.-Y. Lee, Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2010. 35(23): p. 13048-13054.
123. Zacharia, R., et al., Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles. Chemical Physics Letters, 2005. 412(4-6): p. 369-375.
124. Jiang, D.H., et al., Metal/graphene nanocomposites synthesized with the aid of supercritical fluid for promoting hydrogen release from complex hydrides. Nanoscale, 2014. 6(21): p. 12565-12572.
125. Chaudhuri, S. and J.T. Muckerman, First-principles study of Ti-catalyzed hydrogen chemisorption on an Al surface: A critical first step for reversible hydrogen storage in NaAlH4. Journal of Physical Chemistry B, 2005. 109(15): p. 6952-6957.
126. Lee, E.K., Y.W. Cho, and J.K. Yoon, Ab-initio calculations of titanium solubility in NaAlH4 and Na3AlH6. Journal of Alloys and Compounds, 2006. 416(1-2): p. 245-249.
127. Łodziana, Z. and A. Züttel, Ti cations in sodium alanate. Journal of Alloys and Compounds, 2009. 471(1-2): p. L29-L31.
128. Dathar, G.K.P. and D.S. Mainardi, Kinetics of Hydrogen Desorption in NaAlH4 and Ti-Containing NaAlH4. Journal of Physical Chemistry C, 2010. 114(17): p. 8026-8031.
129. Huang, C.K., et al., Energetics and structure of single Ti defects and their influence on the decomposition of NaAlH4. Physical Chemistry Chemical Physics, 2011. 13(2): p. 552-562.
130. Chaudhuri, S., et al., Understanding the Role of Ti in Reversible Hydrogen Storage as Sodium Alanate: A Combined Experimental and Density Functional Theoretical Approach. Journal of the American Chemical Society, 2006. 128(35): p. 11404-11415.
131. Ernzerhof, M., J.P. Perdew, and K. Burke, Density functionals: Where do they come from, why do they work? Density Functional Theory I, 1996. 180: p. 1-30.
132. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters, 1996. 77(18): p. 3865-3868.
133. Segall, M.D., et al., First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2002. 14(11): p. 2717.
134. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
135. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
136. Perdew, J.P., Accurate Density Functional for the Energy: Real-Space Cutoff of the Gradient Expansion for the Exchange Hole.Physical Review Letters, 1985. 55(16): p. 1665-1668.
137. Hammersley AP. FIT2D: An Introduction and Overview. ESRF Internal Report, ESRF97HA02T. Avaliable at http://www.esrf.eu/computing/scientific/FIT2D/FIT2D_INTRO/fit2d.html; 1997.
138. Segall, M.D., et al., First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics-Condensed Matter, 2002. 14(11): p. 2717-2744.
139. Accelrys. Materials Studio, version 7.0; Accelrys Software, Inc.:
San Diego, CA, 2013.
140. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758-1775.
141. Blöchl, P.E., Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953-17979.
142. Perdew, J.P., et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1992. 46(11): p. 6671-6687.
143. Perdew, J.P. and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 1992. 45(23): p. 13244-13249.
144. Atsumi, H. and K. Tauchi, Hydrogen absorption and transport in graphite materials. Journal of Alloys and Compounds, 2003. 356: p. 705-709.
145. Yamanaka, S., et al., Hydrogen content and desorption of carbon nano-structures. Journal of Alloys and Compounds, 2004. 366(1-2): p. 264-268.
146. Miyaoka, H., et al., Characterization of hydrogen absorption/desorption states on lithium-carbon-hydrogen system by neutron diffraction. Journal of Applied Physics, 2008. 104(5).
147. Kim, H.-S., et al., Hydrogen Storage in Ni Nanoparticle-Dispersed Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry B, 2005. 109(18): p. 8983-8986.
148. Hwang, S.-G., et al., Behavior of NiO–MnO2/MWCNT composites for use in a supercapacitor. Materials Chemistry and Physics, 2011. 130(1–2): p. 507-512.
149. Asciutto, E., A. Crespo, and D.A. Estrin, Thermal and solvent effects on the coordination structure of LiA1H(4): a computational study. Chemical Physics Letters, 2002. 353(1-2): p. 178-184.
150. Song, Y., et al., Influence of dopants Ti and Ni on bonding interactions and dehydrogenation properties of lithium alanate. Phys Chem Chem Phys, 2010. 12(36): p. 10942-9.
151. Xu, B.E., et al., Influence of titanium and nickel dopants on the dehydrogenation properties of Mg(AlH4)(2): Electronic structure mechanisms. International Journal of Hydrogen Energy, 2014. 39(17): p. 9276-9287.