簡易檢索 / 詳目顯示

研究生: 黃毓鈞
Huang, Yu-Chun
論文名稱: N型嵌段共軛高分子運用於本質可拉伸場效電晶體之材料設計與應用
Material Design and Application of N-Type Conjugated Block Copolymers for Intrinsically Stretchable Field-Effect Transistors
指導教授: 林彥丞
Lin, Yan-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 159
中文關鍵詞: 共軛嵌段高分子場效應電晶體微裂金電極單壁奈米碳管碳管分選
外文關鍵詞: conjugated block copolymer, field-effect transistor, microcracked gold electrode, single-walled carbon nanotube, sorting SWCNT
相關次數: 點閱:17下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著穿戴式裝置與物聯網技術的快速發展,對具備機械柔性與電性穩定性的電子元件需求日益提升。其中,場效應電晶體因其具備低溫製程、大面積製備與結構可調性等優勢,成為發展軟性電子領域中的關鍵元件之一。為實現本質可拉伸的半導體材料,開發兼具優異電性與機械性的共軛高分子結構已成為研究重點。本研究致力於設計與開發n型共軛多嵌段高分子與n型共軛三向支化型多嵌段共聚物,兩者皆由剛性共軛主鏈聚[1,4,5,8-萘四甲酸二酰亞胺-交替-5,5′-雙噻吩](PNDI2T)與柔性非共軛鏈段聚異丁烯(PIB)所組成,並依據PIB含量命名為:NDI(PIB 0 wt%)、mAB73(PIB 27 wt%)、mAB60(PIB 40 wt%),以及支化型的tAB89(PIB 11 wt%)與tAB66(PIB 34 wt%)。其中,(i)共軛多嵌段高分子應用於本質可拉伸有機場效應電晶體,並結合微裂金電極技術製備整合式可拉伸元件;而(ii)三向支化型多嵌段高分子則進一步應用於單臂奈米碳管(SWCNT)之選擇性分離與可拉伸場效應電晶體之製作。(i)柔性鏈段的導入對高分子薄膜的表面形貌、結晶性以及在應變條件下的電性表現均產生顯著影響。實驗結果顯示,柔性鏈段能有效提升材料延展性,使其在100%應變下無裂痕產生,主要歸因於其低彈性模數(約40–50 MPa)。在元件表現方面,mAB73在100%應變下仍維持穩定的電子遷移率,顯著優於mAB60,反映其在結構穩定性與應變耐受性上的優勢。mAB60因柔性鏈段比例過高,導致高分子鏈排列無序,影響其電荷傳輸能力。進一步將共軛多嵌段高分子與微裂金電極技術結合,成功製備出具整合性與本質拉伸性的高性能半導體元件。研究過程中,探討影響元件「遷移率–拉伸性」關聯的關鍵因素,包括接觸電阻、通道電阻與電極電阻。結果指出,共軛多嵌段高分子通道與電極間的接觸電阻對元件性能具顯著影響,尤其是mAB73能透過奈米金粒子滲入橡膠狀通道表面,形成良好電極接觸,展現高穩定性與操作可逆性。適量柔性鏈段的引入,不僅改善高分子的機械性能,更有效提升元件在拉伸狀態下的遷移率保持性。此外,(ii)本研究亦以共軛三向支化型多嵌段高分子tAB系列成功實現單臂奈米碳管的選擇性分離。經由紫外–可見光吸收光譜分析,證實該高分子能有效選擇性分離半導體型單臂奈米碳管,並具備高產率與高純度,其中以tAB89表現最佳。拉曼光譜進一步驗證金屬型碳管的去除效率,且選出的碳管平均管徑約為1.44 nm,證明此類高分子在分選應用上的優越性能。在場效應電晶體元件中,選擇性分離的半導體型碳管展現優異電荷遷移率,雖隨拉伸程度增加略有下降,但仍維持在0.8–3.0 cm² V⁻¹ s⁻¹之間,顯示其作為可拉伸半導體材料的高度潛力。本研究提出具可設計性之n型共軛多嵌段高分子策略,成功實現同時具備高機械延展性、高遷移率穩定性與操作可逆性的高分子系統。藉由此策略進行之單臂奈米碳管分選亦展現出高純度與高產率,顯示該嵌段高分子材料在本質可拉伸有機半導體與穿戴式電子元件應用上的高度潛能,為未來高性能與高延展性材料設計提供重要參考依據。

    With the rapid advancement of wearable technologies and the Internet of Things (IoT), the demand for electronic devices that offer both mechanical flexibility and electrical stability is steadily increasing. Among them, field-effect transistors (FETs) have emerged as key components in the development of flexible electronics due to their advantages such as low-temperature processing, large-area fabrication, and structural tunability. To realize intrinsically stretchable semiconducting materials, the design and development of conjugated polymers that possess both excellent electrical and mechanical properties has become a major research focus. This study is dedicated to the design and development of n-type conjugated multi-block copolymers and n-type conjugated tri-branched multiblock copolymers, both composed of a rigid conjugated backbone, poly[naphthalene diimide-alt-bithiophene] (PNDI2T), and flexible, non-conjugated polyisobutylene (PIB) segments. The polymers are named based on their PIB content: NDI (0 wt% PIB), mAB73 (27 wt% PIB), mAB60 (40 wt% PIB), and the branched types tAB89 (11 wt% PIB) and tAB66 (34 wt% PIB). (i)The conjugated multi-block copolymers were applied to intrinsically stretchable OFETs and integrated with microcracked gold electrodes, while (ii)the tri-branched multiblock copolymers were further utilized for selective sorting of semiconducting single-walled carbon nanotubes (s-SWCNTs) and for fabricating stretchable FET devices. (i)The incorporation of flexible segments significantly affected the surface morphology, crystallinity, and strain-dependent electrical performance of the polymer thin films. Experimental results revealed that flexible segments improved the ductility of the materials, enabling them to withstand up to 100% strain without cracking, primarily due to their low elastic modulus (~40–50 MPa). In terms of device performance, mAB73 maintained stable electron mobility even at 100% strain, significantly outperforming mAB60, reflecting its superior structural stability and strain resistance. The reduced performance of mAB60 was attributed to excessive flexible content, which disrupted chain packing and impaired charge transport. By integrating the conjugated multi-block copolymer with microcracked gold electrodes, a high-performance device with both intrinsic stretchability and functional integration was successfully fabricated. The study also explored key factors affecting the mobility–stretchability relationship, including contact resistance, channel resistance, and electrode resistance. Results showed that contact resistance at the polymer–electrode interface significantly influenced device performance. In particular, mAB73 demonstrated enhanced stability and operational reversibility due to the infiltration of gold nanoparticles into the rubbery channel surface, resulting in improved electrode contact. The introduction of an appropriate amount of flexible segments not only enhanced the mechanical robustness of the polymer but also improved mobility retention under strain. In addition, (ii)this work successfully demonstrated the use of tri-branched conjugated multiblock copolymers for the selective sorting of s-SWCNTs. UV–vis spectroscopy confirmed their ability to selectively enrich semiconducting SWCNTs with both high yield and high purity, with tAB89 showing the best performance. Raman spectroscopy further validated the effective removal of metallic nanotubes, and the average diameter of the sorted tubes was estimated to be approximately 1.44 nm. When integrated into FET devices, the sorted s-SWCNTs exhibited excellent charge carrier mobility. Although mobility slightly decreased with increasing strain, it remained within 0.8~3.0 cm² V⁻¹ s⁻¹, demonstrating strong potential for use as a stretchable semiconducting material. In conclusion, this study proposes a tailored strategy for designing n-type conjugated multi-block copolymers, successfully achieving a polymer system that combines high mechanical stretchability, mobility stability, and operational reversibility. The use of these polymers for high-yield and high-purity s-SWCNT sorting further demonstrates their applicability in intrinsically stretchable organic semiconductors and wearable electronics, providing a valuable reference for the future development of high-performance and highly stretchable materials.

    中文摘要 i Abstract iii 致謝 vi Contents vii Lists of Figures xi List of Table xviii List of Abbreviation xx Chapter 1 Introduction 1 1-1 Preface 1 1-2 Organic field effect transistor (OFET) 3 1-2.1 Structure of organic field effect transistor 4 1-2.2 Principle of organic field-effect transistors 6 1-2.3 Electrical properties of organic field-effect transistors 8 1-2.4 Transfer line method (TLM) 10 1-3 Conjugated polymer 12 1-3.1 Structural design of conjugated polymers 13 1-3.2 Side chain structure modification 16 1-3.3 Main chain structure modification 18 1-3.4 Conjugated block copolymer (BCP) 20 1-4 Microcracked gold 22 1-5 Structure of Single-Walled Carbon Nanotubes 24 1-6 Processes of Single-Walled Carbon Nanotubes 29 1-6.1 Arc-discharge 30 1-6.2 Laser vaporization 31 1-6.3 Chemical vapor deposition (CVD) 32 1-7 Processes of Single-Walled Carbon Nanotubes Sorting 35 1-7.1 Density gradient ultracentrifugation 36 1-7.2 Gel chromatography 37 1-7.3 Aqueous two-phase extraction 39 1-7.4 Conjugated polymer wrapping 40 Chapter 2 Experimental Methods and Procedures 44 2-1 Experimental Reagents and Chemicals 44 2-2 Experimental Instruments and Equipment 45 2-2.1 Plasma cleaner 45 2-2.2 Spin coater 46 2-2.3 CH Instruments (CHI) 47 2-2.4 Ultraviolet-Visible Spectroscopy (UV-Vis) 48 2-2.5 Optical Microscopy (OM) 49 2-2.6 High Vacuum Thermal Evaporation Machine 50 2-2.7 Ultrasonic Sonicator 51 2-2.8 Centrifuge 52 2-2.9 Semiconductor Parameter Analyzer 53 2-2.10 Atomic Force Microscope (AFM) 54 2-2.11 Focused Ion Beam and Transmission Electron Microscope 55 2-2.12 Grazing Incidence X-ray Diffraction (GIDX) 56 2-2.13 Alpha step 57 2-2.14 Raman Spectroscopy 58 2-3 Fabrication of the OFET Devices 59 2-4 Fabrication of the Integrated Stretchable Devices 60 2-5 s-SWCNT sorting 61 2-6 Processes of s-SWCNT FET devices 62 Chapter 3 Multiblock copolymer with microcracked gold for intrinsically stretchable field-effect transistors 64 3-1 Characterization of Multiblock Copolymers 64 3-1.1 Electrochemical and optical properties 66 3-1.2 Mechanical properties and surface morphology 68 3-1.3 Microstructure of multiblock copolymers 71 3-1.4 Multiblock copolymer of OFET devices 82 3-1.5 Comparison with literature 88 3-2 Integrated Stretchable Devices 90 3-2.1 Morphology of Microcracked gold 91 3-2.2 Resistance of devices analysis 94 3-2.3 Integrated Stretchable OFET Devices 99 Chapter 4 Multiblock copolymer/s-SWCNT for intrinsically stretchable field-effect transistors 105 4-1 Tri-branched multiblock copolymer sorting SWCNT 105 4-2 SWCNT OFET devices 114 4-2.1 Surface morphology of SWCNT 114 4-2.2 FET devices 115 4-2.3 Stretchable FET devices 118 Chapter 5 Conclusion 122 Chapter 6 Future Work 126 Reference 128

    1. Choi, M.-C.; Kim, Y.; Ha, C.-S., Polymers for flexible displays: From material selection to device applications. Progress in Polymer Science 2008, 33 (6), 581-630.
    2. Chortos, A.; Liu, J.; Bao, Z., Pursuing prosthetic electronic skin. Nature Materials 2016, 15 (9), 937-950.
    3. Ilievski, F.; Mazzeo, A. D.; Shepherd, R. F.; Chen, X.; Whitesides, G., Soft robotics for chemists. 2011.
    4. Shao, B.; Lu, M.-H.; Wu, T.-C.; Peng, W.-C.; Ko, T.-Y.; Hsiao, Y.-C.; Chen, J.-Y.; Sun, B.; Liu, R.; Lai, Y.-C., Large-area, untethered, metamorphic, and omnidirectionally stretchable multiplexing self-powered triboelectric skins. Nature Communications 2024, 15 (1), 1238.
    5. Xu, M.; Obodo, D.; Yadavalli, V. K., The design, fabrication, and applications of flexible biosensing devices. Biosensors and Bioelectronics 2019, 124, 96-114.
    6. Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M., Fiber‐based wearable electronics: a review of materials, fabrication, devices, and applications. Advanced Materials 2014, 26 (31), 5310-5336.
    7. Torsi, L.; Magliulo, M.; Manoli, K.; Palazzo, G., Organic field-effect transistor sensors: a tutorial review. Chemical Society Reviews 2013, 42 (22), 8612-8628.
    8. Liu, K.; Ouyang, B.; Guo, X.; Guo, Y.; Liu, Y., Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flexible Electronics 2022, 6 (1), 1.
    9. Horowitz, G., Organic field‐effect transistors. Advanced materials 1998, 10 (5), 365-377.
    10. Sirringhaus, H., Device physics of solution‐processed organic field‐effect transistors. Advanced Materials 2005, 17 (20), 2411-2425.
    11. Guo, Y.; Yu, G.; Liu, Y., Functional organic field‐effect transistors. Advanced Materials 2010, 22 (40), 4427-4447.
    12. Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T., Donor–acceptor‐conjugated polymer for high‐performance organic field‐effect transistors: a progress report. Advanced Functional Materials 2020, 30 (20), 1904545.
    13. Horowitz, G., Organic thin film transistors: From theory to real devices. Journal of Materials Research 2004, 19 (7), 1946-1962.
    14. Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J.-L.; Ewbank, P. C.; Mann, K. R., Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chemistry of materials 2004, 16 (23), 4436-4451.
    15. Zaumseil, J.; Sirringhaus, H., Electron and ambipolar transport in organic field-effect transistors. Chemical Reviews 2007, 107 (4), 1296-1323.
    16. Braga, D.; Horowitz, G., High‐performance organic field‐effect transistors. Advanced Materials 2009, 21 (14‐15), 1473-1486.
    17. Thomas, S. R.; Pattanasattayavong, P.; Anthopoulos, T. D., Solution-processable metal oxide semiconductors for thin-film transistor applications. Chemical Society Reviews 2013, 42 (16), 6910-6923.
    18. Chen, M.; Peng, B.; Sporea, R. A.; Podzorov, V.; Chan, P. K. L., The Origin of Low Contact Resistance in Monolayer Organic Field‐Effect Transistors with van der Waals Electrodes. Small Science 2022, 2 (6), 2100115.
    19. Kim, C. H.; Bonnassieux, Y.; Horowitz, G., Charge distribution and contact resistance model for coplanar organic field-effect transistors. IEEE transactions on electron devices 2012, 60 (1), 280-287.
    20. Xu, Y.; Gwoziecki, R.; Chartier, I.; Coppard, R.; Balestra, F.; Ghibaudo, G., Modified transmission-line method for contact resistance extraction in organic field-effect transistors. Applied Physics Letters 2010, 97 (6).
    21. Park, J. S.; Kim, G. U.; Lee, S.; Lee, J. W.; Li, S.; Lee, J. Y.; Kim, B. J., Material design and device fabrication strategies for stretchable organic solar cells. Advanced Materials 2022, 34 (31), 2201623.
    22. Wu, Y.; Yuan, Y.; Sorbelli, D.; Cheng, C.; Michalek, L.; Cheng, H.-W.; Jindal, V.; Zhang, S.; LeCroy, G.; Gomez, E. D., Tuning polymer-backbone coplanarity and conformational order to achieve high-performance printed all-polymer solar cells. Nature Communications 2024, 15 (1), 2170.
    23. Liu, W.; Zhang, C.; Alessandri, R.; Diroll, B. T.; Li, Y.; Liang, H.; Fan, X.; Wang, K.; Cho, H.; Liu, Y., High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nature Materials 2023, 22 (6), 737-745.
    24. Zhang, Z.; Wang, W.; Jiang, Y.; Wang, Y.-X.; Wu, Y.; Lai, J.-C.; Niu, S.; Xu, C.; Shih, C.-C.; Wang, C., High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022, 603 (7902), 624-630.
    25. Guo, X.; Baumgarten, M.; Müllen, K., Designing π-conjugated polymers for organic electronics. Progress in Polymer Science 2013, 38 (12), 1832-1908.
    26. Zheng, Y.; Zhang, S.; Tok, J. B.-H.; Bao, Z., Molecular design of stretchable polymer semiconductors: current progress and future directions. Journal of the American Chemical Society 2022, 144 (11), 4699-4715.
    27. Yamashita, Y., Organic semiconductors for organic field-effect transistors. Science and Technology of Advanced Materials 2009, 10 (2), 024313.
    28. Ding, L.; Yu, Z.-D.; Wang, X.-Y.; Yao, Z.-F.; Lu, Y.; Yang, C.-Y.; Wang, J.-Y.; Pei, J., Polymer semiconductors: synthesis, processing, and applications. Chemical Reviews 2023, 123 (12), 7421-7497.
    29. Van Mullekom, H.; Vekemans, J.; Havinga, E.; Meijer, E., Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Materials Science and Engineering: R: Reports 2001, 32 (1), 1-40.
    30. Higashihara, T., Strategic design and synthesis of π-conjugated polymers suitable as intrinsically stretchable semiconducting materials. Polymer Journal 2021, 53 (10), 1061-1071.
    31. Liu, Z.; Zhang, G.; Zhang, D., Modification of side chains of conjugated molecules and polymers for charge mobility enhancement and sensing functionality. Accounts of Chemical Research 2018, 51 (6), 1422-1432.
    32. Liu, D.; Mun, J.; Chen, G.; Schuster, N. J.; Wang, W.; Zheng, Y.; Nikzad, S.; Lai, J.-C.; Wu, Y.; Zhong, D., A design strategy for intrinsically stretchable high-performance polymer semiconductors: Incorporating conjugated rigid fused-rings with bulky side groups. Journal of the American Chemical Society 2021, 143 (30), 11679-11689.
    33. Mei, J.; Bao, Z., Side chain engineering in solution-processable conjugated polymers. Chemistry of Materials 2014, 26 (1), 604-615.
    34. Ashizawa, M.; Zheng, Y.; Tran, H.; Bao, Z., Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Progress in Polymer Science 2020, 100, 101181.
    35. Mun, J.; Wang, G. J. N.; Oh, J. Y.; Katsumata, T.; Lee, F. L.; Kang, J.; Wu, H. C.; Lissel, F.; Rondeau‐Gagné, S.; Tok, J. B. H., Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Advanced Functional Materials 2018, 28 (43), 1804222.
    36. Yu, X.; Chen, L.; Li, C.; Gao, C.; Xue, X.; Zhang, X.; Zhang, G.; Zhang, D., Intrinsically stretchable polymer semiconductors with good ductility and high charge mobility through reducing the central symmetry of the conjugated backbone units. Advanced Materials 2023, 35 (17), 2209896.
    37. Oh, J. Y.; Rondeau-Gagné, S.; Chiu, Y.-C.; Chortos, A.; Lissel, F.; Wang, G.-J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T., Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 2016, 539 (7629), 411-415.
    38. Savagatrup, S.; Zhao, X.; Chan, E.; Mei, J.; Lipomi, D. J., Effect of broken conjugation on the stretchability of semiconducting polymers. Macromolecular Rapid Communications 2016, 37 (19), 1623-1628.
    39. Yamamoto, S.; Matsuda, M.; Lin, C.-Y.; Enomoto, K.; Lin, Y.-C.; Chen, W.-C.; Higashihara, T., Intrinsically Stretchable Block Copolymer Composed of Polyisobutene and Naphthalenediimide–Bithiophene-Based π-Conjugated Polymer Segments for Field-Effect Transistors. ACS Applied Polymer Materials 2022, 4 (12), 8942-8951.
    40. Li, X.; Ou, X.; Chen, G.; Bi, R.; Li, Z.; Xie, Z.; Yue, W.; Guo, S.-Z., Ultrasoft and high-adhesion block copolymers for neuromorphic computing. ACS Applied Materials & Interfaces 2024, 16 (10), 12897-12906.
    41. Zhang, F.; Sun, J.; Liu, F.; Li, J.; Hu, B.-L.; Tang, Q.; Li, R.-W., Intrinsically Elastic Semiconductors through Aldehyde–Amine Polycondensation and Its Application on Stretchable Transistor. ACS Applied Materials & Interfaces 2024, 16 (29), 38324-38333.
    42. An, C.; Dong, W.; Pei, D.; Qin, X.; Wang, Z.; Zhao, B.; Bu, L.; Chen, H.; Han, Y.; Chi, C., Elastic semiconductor blends with high strain cycling durability using an oligothiophene-based multiblock polyurethane matrix. Macromolecules 2023, 56 (14), 5314-5325.
    43. Ditte, K.; Perez, J.; Chae, S.; Hambsch, M.; Al‐Hussein, M.; Komber, H.; Formanek, P.; Mannsfeld, S. C.; Fery, A.; Kiriy, A., Ultrasoft and high‐mobility block copolymers for skin‐compatible electronics. Advanced materials 2021, 33 (4), 2005416.
    44. Sarker, B. K.; Khondaker, S. I., Thermionic emission and tunneling at carbon nanotube–organic semiconductor interface. ACS Nano 2012, 6 (6), 4993-4999.
    45. Xie, W.; Prabhumirashi, P. L.; Nakayama, Y.; McGarry, K. A.; Geier, M. L.; Uragami, Y.; Mase, K.; Douglas, C. J.; Ishii, H.; Hersam, M. C., Utilizing carbon nanotube electrodes to improve charge injection and transport in bis (trifluoromethyl)-dimethyl-rubrene ambipolar single crystal transistors. ACS Nano 2013, 7 (11), 10245-10256.
    46. Kim, E.; Lai, J. C.; Michalek, L.; Wang, W.; Xu, C.; Lyu, H.; Yu, W.; Park, H.; Tomo, Y.; Root, S. E., A Transparent, Patternable, and Stretchable Conducting Polymer Solid Electrode for Dielectric Elastomer Actuators. Advanced Functional Materials 2025, 35 (1), 2411880.
    47. Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I., A highly stretchable, transparent, and conductive polymer. Science Advances 2017, 3 (3), e1602076.
    48. Faupel, F.; Thran, A.; Kiene, M.; Strunskus, T.; Zaporojtchenko, V.; Behnke, K., Diffusion of metals in polymers and during metal/polymer interface formation. In Low Dielectric Constant Materials for IC Applications, Springer: 2003; pp 221-251.
    49. Faupel, F.; Willecke, R.; Thran, A., Diffusion of metals in polymers. Materials Science and Engineering: R: Reports 1998, 22 (1), 1-55.
    50. Lee, Y.; Chung, J. W.; Lee, G. H.; Kang, H.; Kim, J.-Y.; Bae, C.; Yoo, H.; Jeong, S.; Cho, H.; Kang, S.-G., Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Science Advances 2021, 7 (23), eabg9180.
    51. Jiang, Y.; Ji, S.; Sun, J.; Huang, J.; Li, Y.; Zou, G.; Salim, T.; Wang, C.; Li, W.; Jin, H., A universal interface for plug-and-play assembly of stretchable devices. Nature 2023, 614 (7948), 456-462.
    52. Yang, D.; Tian, G.; Liang, C.; Yang, Z.; Zhao, Q.; Chen, J.; Ma, C.; Jiang, Y.; An, N.; Liu, Y., Double‐Microcrack Coupling Stretchable Neural Electrode for Electrophysiological Communication. Advanced Functional Materials 2023, 33 (37), 2300412.
    53. Dresselhaus, G.; Dresselhaus, M. S.; Saito, R., Physical properties of carbon nanotubes. World Scientific: 1998.
    54. Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P.; Rao, A., Carbon nanotubes. Springer: 2000.
    55. Dresselhaus, M.; Dresselhaus, G.; Jorio, A., Unusual properties and structure of carbon nanotubes. Annu. Rev. Mater. Res. 2004, 34 (1), 247-278.
    56. Hodge, S. A.; Bayazit, M. K.; Coleman, K. S.; Shaffer, M. S., Unweaving the rainbow: a review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity. Chemical Society Reviews 2012, 41 (12), 4409-4429.
    57. Popov, V. N., Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports 2004, 43 (3), 61-102.
    58. Wei, X.; Li, S.; Wang, W.; Zhang, X.; Zhou, W.; Xie, S.; Liu, H., Recent advances in structure separation of single‐wall carbon nanotubes and their application in optics, electronics, and optoelectronics. Advanced Science 2022, 9 (14), 2200054.
    59. Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A., Carbon nanotubes--the route toward applications. Science 2002, 297 (5582), 787-792.
    60. Zhong, D.; Nishio, Y.; Wu, C.; Jiang, Y.; Wang, W.; Yuan, Y.; Yao, Y.; Tok, J. B.-H.; Bao, Z., Design Considerations and Fabrication Protocols of High-Performance Intrinsically Stretchable Transistors and Integrated Circuits. ACS Publications: 2024.
    61. Das, R.; Shahnavaz, Z.; Ali, M. E.; Islam, M. M.; Abd Hamid, S. B., Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis? Nanoscale research letters 2016, 11, 1-23.
    62. Dai, H., Carbon nanotubes: opportunities and challenges. Surface Science 2002, 500 (1-3), 218-241.
    63. Dai, H., Carbon nanotubes: synthesis, integration, and properties. Accounts of Chemical Research 2002, 35 (12), 1035-1044.
    64. Rathinavel, S.; Priyadharshini, K.; Panda, D., A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Materials Science and Engineering: B 2021, 268, 115095.
    65. Mubarak, N.; Abdullah, E.; Jayakumar, N.; Sahu, J., An overview on methods for the production of carbon nanotubes. Journal of Industrial and Engineering Chemistry 2014, 20 (4), 1186-1197.
    66. Iijima, S., Helical microtubules of graphitic carbon. nature 1991, 354 (6348), 56-58.
    67. Somu, C.; Karthi, A.; Singh, S.; Karthikeyan, R.; Dinesh, S.; Ganesh, N., Synthesis of various forms of carbon nanotubes by arc discharge methods—Comprehensive review. International Research Journal of Engineering and Technology 2017, 4 (1), 344-354.
    68. Zhao, J.; Su, Y.; Yang, Z.; Wei, L.; Wang, Y.; Zhang, Y., Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon 2013, 58, 92-98.
    69. Arora, N.; Sharma, N., Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diamond and Related Materials 2014, 50, 135-150.
    70. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G., Crystalline ropes of metallic carbon nanotubes. Science 1996, 273 (5274), 483-487.
    71. Maser, W. K.; Benito, A. M.; Martınez, M. T., Production of carbon nanotubes: the light approach. Carbon 2002, 40 (10), 1685-1695.
    72. Maser, W. K.; Muñoz, E.; Benito, A. M.; Martınez, M.; De La Fuente, G.; Maniette, Y.; Anglaret, E.; Sauvajol, J.-L., Production of high-density single-walled nanotube material by a simple laser-ablation method. Chemical Physics Letters 1998, 292 (4-6), 587-593.
    73. Lan, Y.; Wang, Y.; Ren, Z., Physics and applications of aligned carbon nanotubes. Advances in Physics 2011, 60 (4), 553-678.
    74. José‐Yacamán, M.; Miki‐Yoshida, M.; Rendón, L.; Santiesteban, J. G., Catalytic growth of carbon microtubules with fullerene structure. Applied Physics Letters 1993, 62 (6), 657-659.
    75. Brown, B.; Parker, C. B.; Stoner, B. R.; Glass, J. T., Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst. Carbon 2011, 49 (1), 266-274.
    76. Varshney, D.; Weiner, B. R.; Morell, G., Growth and field emission study of a monolithic carbon nanotube/diamond composite. Carbon 2010, 48 (12), 3353-3358.
    77. Pant, M.; Singh, R.; Negi, P.; Tiwari, K.; Singh, Y., A comprehensive review on carbon nano-tube synthesis using chemical vapor deposition. Materials Today: Proceedings 2021, 46, 11250-11253.
    78. Shah, K. A.; Tali, B. A., Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing 2016, 41, 67-82.
    79. Zaytseva, O.; Neumann, G., Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture 2016, 3, 1-26.
    80. Bell, M. S.; Teo, K. B.; Lacerda, R. G.; Milne, W.; Hash, D. B.; Meyyappan, M., Carbon nanotubes by plasma-enhanced chemical vapor deposition. Pure and Applied Chemistry 2006, 78 (6), 1117-1125.
    81. Hofmann, S.; Ducati, C.; Robertson, J.; Kleinsorge, B., Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Applied Physics Letters 2003, 83 (1), 135-137.
    82. Liu, Y.; He, J.; Zhang, N.; Zhang, W.; Zhou, Y.; Huang, K., Advances of microwave plasma-enhanced chemical vapor deposition in fabrication of carbon nanotubes: a review. Journal of Materials Science 2021, 56 (22), 12559-12583.
    83. Mao, M.; Bogaerts, A., Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma enhanced CVD system: the effect of different gas mixtures. Journal of Physics D: Applied Physics 2010, 43 (20), 205201.
    84. Walker Jr, P. L.; Rakszawski, J.; Imperial, G., Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysts. I. Properties of carbon formed. The Journal of Physical Chemistry 1959, 63 (2), 133-140.
    85. Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K.; Smalley, R. E., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physics Letters 1999, 313 (1-2), 91-97.
    86. Healy, M. L.; Dahlben, L. J.; Isaacs, J. A., Environmental assessment of single‐walled carbon nanotube processes. Journal of Industrial Ecology 2008, 12 (3), 376-393.
    87. Janas, D., Towards monochiral carbon nanotubes: a review of progress in the sorting of single-walled carbon nanotubes. Materials Chemistry Frontiers 2018, 2 (1), 36-63.
    88. Kharlamova, M. V.; Burdanova, M. G.; Paukov, M. I.; Kramberger, C., Synthesis, sorting, and applications of single-chirality single-walled carbon nanotubes. Materials 2022, 15 (17), 5898.
    89. Komatsu, N.; Wang, F., A comprehensive review on separation methods and techniques for single-walled carbon nanotubes. Materials 2010, 3 (7), 3818-3844.
    90. Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C., Sorting carbon nanotubes by electronic structure using density differentiation. Nature nanotechnology 2006, 1 (1), 60-65.
    91. Fagan, J. A.; Becker, M. L.; Chun, J.; Hobbie, E. K., Length fractionation of carbon nanotubes using centrifugation. Advanced Materials 2008, 20 (9), 1609-1613.
    92. Feng, Y.; Miyata, Y.; Matsuishi, K.; Kataura, H., High-efficiency separation of single-wall carbon nanotubes by self-generated density gradient ultracentrifugation. The Journal of Physical Chemistry C 2011, 115 (5), 1752-1756.
    93. Fleurier, R.; Lauret, J. S.; Lopez, U.; Loiseau, A., Transmission electron microscopy and UV–vis–IR spectroscopy analysis of the diameter sorting of carbon nanotubes by gradient density ultracentrifugation. Advanced Functional Materials 2009, 19 (14), 2219-2223.
    94. Ghosh, S.; Bachilo, S. M.; Weisman, R. B., Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nature Nanotechnology 2010, 5 (6), 443-450.
    95. Niyogi, S.; Hu, H.; Hamon, M.; Bhowmik, P.; Zhao, B.; Rozenzhak, S.; Chen, J.; Itkis, M.; Meier, M.; Haddon, R., Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs). Journal of the American Chemical Society 2001, 123 (4), 733-734.
    96. Liu, H.; Tanaka, T.; Kataura, H., Optical isomer separation of single-chirality carbon nanotubes using gel column chromatography. Nano letters 2014, 14 (11), 6237-6243.
    97. Tulevski, G. S.; Franklin, A. D.; Afzali, A., High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. ACS Nano 2013, 7 (4), 2971-2976.
    98. Duesberg, G.; Blau, W.; Byrne, H.; Muster, J.; Burghard, M.; Roth, S., Chromatography of carbon nanotubes. Synthetic Metals 1999, 103 (1-3), 2484-2485.
    99. Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H., Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nature Communications 2011, 2 (1), 309.
    100. Liu, H.; Tanaka, T.; Urabe, Y.; Kataura, H., High-efficiency single-chirality separation of carbon nanotubes using temperature-controlled gel chromatography. Nano Letters 2013, 13 (5), 1996-2003.
    101. Yahya, I.; Bonaccorso, F.; Clowes, S. K.; Ferrari, A. C.; Silva, S., Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography. Carbon 2015, 93, 574-594.
    102. Ao, G.; Khripin, C. Y.; Zheng, M., DNA-controlled partition of carbon nanotubes in polymer aqueous two-phase systems. Journal of the American Chemical Society 2014, 136 (29), 10383-10392.
    103. Fagan, J. A., Aqueous two-polymer phase extraction of single-wall carbon nanotubes using surfactants. Nanoscale Advances 2019, 1 (9), 3307-3324.
    104. Fagan, J. A.; Hároz, E. H.; Ihly, R.; Gui, H.; Blackburn, J. L.; Simpson, J. R.; Lam, S.; Hight Walker, A. R.; Doorn, S. K.; Zheng, M., Isolation of> 1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction. ACS Nano 2015, 9 (5), 5377-5390.
    105. Tu, X.; Zheng, M., A DNA-based approach to the carbon nanotube sorting problem. Nano Research 2008, 1 (3), 185-194.
    106. Li, H.; Gordeev, G.; Garrity, O.; Reich, S.; Flavel, B. S., Separation of small-diameter single-walled carbon nanotubes in one to three steps with aqueous two-phase extraction. Acs Nano 2019, 13 (2), 2567-2578.
    107. Fagan, J. A.; Khripin, C. Y.; Silvera Batista, C. A.; Simpson, J. R.; Hároz, E. H.; Hight Walker, A. R.; Zheng, M., Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv. Mater 2014, 26 (18), 2800-2804.
    108. Wang, H.; Bao, Z., Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today 2015, 10 (6), 737-758.
    109. Qiu, S.; Wu, K.; Gao, B.; Li, L.; Jin, H.; Li, Q., Solution‐processing of high‐purity semiconducting single‐walled carbon nanotubes for electronics devices. Advanced Materials 2019, 31 (9), 1800750.
    110. Fong, D.; Adronov, A., Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chemical science 2017, 8 (11), 7292-7305.
    111. Wang, J.; Lei, T., Separation of semiconducting carbon nanotubes using conjugated polymer wrapping. Polymers 2020, 12 (7), 1548.
    112. Yi, W.; Malkovskiy, A.; Chu, Q.; Sokolov, A. P.; Colon, M. L.; Meador, M.; Pang, Y., Wrapping of single-walled carbon nanotubes by a π-conjugated polymer: the role of polymer conformation-controlled size selectivity. The Journal of Physical Chemistry B 2008, 112 (39), 12263-12269.
    113. Gomulya, W.; Diaz Costanzo, G.; Carvalho, E. J.; Bisri, S. Z.; Derenskyi, V.; Fritsch, M.; Fröhlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A., Semiconducting single-walled carbon nanotubes on demand by polymer wrapping. 2013.
    114. Samanta, S. K.; Fritsch, M.; Scherf, U.; Gomulya, W.; Bisri, S. Z.; Loi, M. A., Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping. Accounts of Chemical Research 2014, 47 (8), 2446-2456.
    115. Tung, Y. H.; Su, S. W.; Su, E. J.; Jiang, G. H.; Chen, C. C.; Yu, S. S.; Chiu, C. C.; Shih, C. C.; Lin, Y. C., Semiconducting Carbon Nanotubes with Light‐Driven Gating Behaviors in Phototransistor Memory Utilizing an N‐Type Conjugated Polymer Sorting. Small Science 2024, 4 (4), 2300268.
    116. Fong, D.; Adronov, A., Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon Nanotubes. Macromolecules 2017, 50 (20), 8002-8009.
    117. Chiu, Y.-C.; Chen, M.-N.; Iwasaki, R.; Ashiya, M.; Zhao, H.; Hong, Q.-A.; Li, Y.-T.; Chen, K.-L.; Mburu, M.; Li, W.-T., Block Copolymer Architectures for Modulating Interactions to Enhance Selectivity and Stability of s-SWCNT Dispersions. 2025.
    118. Lin, Y.-C.; Matsuda, M.; Sato, K.-i.; Chen, C.-K.; Yang, W.-C.; Chueh, C.-C.; Higashihara, T.; Chen, W.-C., Intrinsically stretchable naphthalenediimide–bithiophene conjugated statistical terpolymers using branched conjugation break spacers for field–effect transistors. Polymer Chemistry 2021, 12 (42), 6167-6178.
    119. Huang, Y.-W.; Lin, Y.-C.; Yen, H.-C.; Chen, C.-K.; Lee, W.-Y.; Chen, W.-C.; Chueh, C.-C., High mobility preservation of near amorphous conjugated polymers in the stretched states enabled by biaxially-extended conjugated side-chain design. Chemistry of Materials 2020, 32 (17), 7370-7382.
    120. Heise, H.; Kuckuk, R.; Ojha, A.; Srivastava, A.; Srivastava, V.; Asthana, B., Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single‐and multi‐walled nanotubes, graphitised porous carbon and graphite. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 2009, 40 (3), 344-353.
    121. Huang, Y.-C.; Yamamoto, S.; Chen, J.-Y.; Su, C.-J.; Jeng, U.-S.; Higashihara, T.; Lin, Y.-C., Conjugated Multiblock Copolymers and Microcracked Gold Electrodes Applied for the Intrinsically Stretchable Field-Effect Transistor. ACS Applied Materials & Interfaces 2025, 17 (14), 21521-21535.
    122. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A., Raman spectroscopy of carbon nanotubes. Physics Reports 2005, 409 (2), 47-99.
    123. Yamashita, S., Nonlinear optics in carbon nanotube, graphene, and related 2D materials. Apl Photonics 2019, 4 (3).
    124. Lee, J. U.; Gipp, P.; Heller, C., Carbon nanotube pn junction diodes. Applied Physics Letters 2004, 85 (1), 145-147.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE