簡易檢索 / 詳目顯示

研究生: 張羊進
Chang, Yang-Chin
論文名稱: 以落門試驗探討水平節理岩盤開挖變形行為之研究
Deformation Analysis of Horizontal Joints on the Excavation of Rock Masses using Trapdoor Test
指導教授: 林宏明
Lin, Hung-Ming
陳昭旭
Chen, Chao-Shiu
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 140
中文關鍵詞: 節理拱效應DDAPhase2落門試驗
外文關鍵詞: Joint, Arching effect, Trapdoor Test, Phase2, DD
相關次數: 點閱:121下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我國為地狹人稠的海島型國家,於可開發面積有限的情況下,人們考慮以開發地下空間來因應面積不足的問題,例如:鐵公路地下化等相關開發計畫。然而,好的開發計畫可以帶給人們生活便利,相反的,施工不當所導致的工程問題,將對人民生命財產造成威脅,因此,若能於地下空間開發初期,針對開發行為可能導致的地表沉陷問題進行有效的模擬評估,可減少工程災害對人民的影響。
    因此,本研究主要目的是希望透過落門試驗(Trapdoor Test)探討水平節理岩盤開挖之變形行為,其試驗主要分為單孔隧道開挖模擬與雙孔隧道開挖模擬兩個部份,並針對其開挖過程所引致的地盤最大沉陷量和影響範圍、拱效應影響區及開挖區周圍岩體之變形行為等進行分析及探討。
    研究結果發現,本研究所使用之變形攝影測量技術其精度可達0.1mm,已達本研究之需求。且於單、雙落門試驗結果均發現,隨著隧道覆土層厚度增加,地盤拱效應能完整發揮,使其對地表影響隨之減少。而當兩隧道開挖間距小於1.0D時,新隧道開挖易對現有隧道周圍地盤造成影響;相反的,當其間距大於1.0D時,則無互相影響的情形。
    將數值分析結果與本研究落門試驗結果比較發現,有限元素法分析軟體Phase2分析結果較與試驗結果相近,而不連續位移分析法DDA因參數僅作初步假設,故其應用於本研究有稍微高估地表沉陷影響範圍,未來若能經修正再進行模擬,將更顯完善。

    Taiwan is densely populated and congested environment of the island country. In the circumstance of the limited development area, people consider to develop underground space in response to the problem of inadequate space, such as: rail road underground, and other relevant development plan. However, the good development plan can promote people's lives more convenient. On the contrary, because of improper construction caused by engineering problems will pose a threat to people's lives and property. The excavation in the early development of underground space could lead to surface settlement problems. Therefore, the effective evaluation of the simulation can minimize the impact of disasters on the people.
    This study presents the trapdoor test to discuss the deformed behavior in the horizontal joint of the rock excavation. Two parts of this test are divided the single-hole and double-hole simulations of the tunnel excavation, respectively, to analyze the mechanical behaviors, i.e. the maximum settlement and affected area in the process of excavation, the deformation around the arching effect and excavation of the rock mass.
    The results showed that the use of the deformation of the Institute for Photogrammetry its technical accuracy of 0.1 mm, this study has reached the demand. And in single-and double-door test results were found, along with increased thickness of the tunnel casing, the site arch effect can play a full, to be reduced impact on the surface. When the two tunnel excavation spacing of less than 1.0 D, the new tunnel to the existing tunnel-digging around the impact site; On the contrary, when the pitch is greater than 1.0 D, the situation is not affecting each other.

    The numerical analysis of the results of this study and drop-door test results found that finite element analysis software Phase2 analysis and test results than similar, but not continuous displacement analysis by DDA Preliminary parameters for only assume that it applied to this study are slightly Overestimated the extent of surface subsidence, as amended, the future if further simulation, will be even more perfect.

    摘 要 I ABSTRACT II 致 謝 IV 目 錄 V 圖 目 錄 VII 表 目 錄 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究流程 2 1.3 研究內容 2 第二章 文獻回顧 5 2.1 開挖引致之地盤沉陷 5 2.1.1 地盤沉陷原因 5 2.1.2 地表沉陷量分析 6 2.2 拱效應 14 2.2.1 拱效應理論 14 2.2.2 拱效應相關研究 17 2.3 岩石節理勁度之估算 21 2.3.1 試驗估算法 22 2.3.2 經驗估算法 25 2.4 隧道破壞模式 26 2.5 落門試驗相關研究 34 2.6 近景攝影測量 38 第三章 數值分析方法 41 3.1 有限元素分析法之Phase2 41 3.2 不連續位移分析法 46 3.2.1 DDA程式之理論背景概述 46 3.2.2 DDA塊體之位移與變形 48 3.2.3 DDA塊體變形矩陣之推導 51 3.2.4 DDA平衡方程式之建立 53 3.2.5 DDA塊體之受力條件 55 3.2.6 DDA塊體之動力分析 56 3.2.7 DDA節理勁度估算 57 第四章 落門試驗設計與成果分析 58 4.1 試驗模型 58 4.2 試驗儀器及相關設備 58 4.2.1 落門試驗設備 58 4.2.2 攝影測量系統 59 4.2.3 軟體 59 4.2.4 輔助量測系統 60 4.3 地層模型材料 60 4.4 攝影量測系統與輔助量測系統之比較 61 4.5 單落門試驗結果分析 64 4.5.1 試驗條件 64 4.5.2 試驗分析結果 65 4.6 雙落門試驗結果分析 75 4.6.1 試驗條件 75 4.6.2 試驗分析結果 76 第五章 數值模擬分析之結果 93 5.1 參數研究 93 5.1.1 分析架構 93 5.1.2 數值模型 94 5.1.3 建立邊界網格 95 5.1.4 塊體材料參數 96 5.2 數值分析結果討論 98 5.2.1 Phase2分析結果 98 5.2.2 DDA分析結果 105 5.2.3 數值分析與單落門試驗實值之差異 106 第六章 結論與建議 110 6.1 結論 110 6.2 建議 113 參考文獻 114 圖 目 錄 圖 1.1 研究流程圖 4 圖 2.1 潛盾工法土壤流失來源示意圖(重繪 王繼勝,1988) 6 圖 2.2 潛盾工法土壤流失來源之示意圖(PECK, 1969) 8 圖 2.3 不同土層下I/R與Z0/2R之關係(PECK, 1969) 9 圖 2.4 水平坑道開挖導致地表沉陷預測計算各參數示意圖 13 圖 2.5 SEH之地表沉陷剖面設計圖 (SEH, 1975) 13 圖 2.6 TERZAGHI拱效應示意圖(TERZAGHI, 1936) 14 圖 2.7 完全與部分拱效應覆土壓力圖(TERZAGHI, 1936) 15 圖 2.8 完全與部分拱效應示意圖(重繪 TERZAGHI,1936) 16 圖 2.9 TERZAGHI岩層拱效應理論示意圖(TERZAGHI, 1946) 17 圖 2.10 HANDY拱效應莫爾圓及最小主應力軌跡(HANDY, 1985) 18 圖 2.11 降伏區土體(KINGSLEY, 1988) 19 圖 2.12 方塊系統中拱作用現象(重繪TROLLOPE,1968) 20 圖 2.13 隧道開挖分析之應力場與最小主應力等值線分布圖 21 圖 2.14 剪應力與剪位移之關係圖(BANDIS, 1983) 22 圖 2.15 正向應力與軸向未移之關係圖(BANDIS, 1983) 23 圖 2.16 剪應力與剪位移之關係圖(GOODMAN, 1989) 24 圖 2.17 正向應力與軸向未移之關係圖(GOODMAN, 1989) 25 圖 2.18 節理勁度試驗法則(PARK, 2001) 26 圖 2.19 塊體弱面直接剪力試驗結果(PARK, 2001) 26 圖 2.20 水平節理岩層之超挖(TERZAGHI, 1946) 30 圖 2.21 垂直節理岩層之超挖(TERZAGHI, 1946) 31 圖 2.22 傾斜節理岩層之超挖(TERZAGHI, 1946) 31 圖 2.23 中等節理岩塊狀岩體之超挖(TERZAGHI, 1946) 31 圖 2.24 水平層岩石中頂部破壞行為之模型(GOODMAN, 1980) 33 圖 2.25 傾斜岩層破壞型式(GOODMAN, 1980) 33 圖 2.26 隧道四壁穩定與不穩定間相當的收斂關係(GOODMAN,1980) 34 圖 2.27 TERZAGHI落門試驗示意圖(重繪TREZAGHI,1936) 35 圖 2.28 ADACHI利用鋁棒堆疊之模型示意圖(謝興宇,1994) 35 圖 2.29 PARK落門試驗 (PARK AND ADACHI,2002) 36 圖 2.30 H2為20CM之土壓力(PARK AND ADACHI,2002) 37 圖 2.31 作用於落門上之正規土壓力(PARK AND ADACHI,2002) 37 圖 2.32 地表沉陷三維變形曲線(許明峰,2000) 39 圖 2.33 地表沉陷剖面圖(許明峰,2000) 40 圖 3.1 各種節理面剪力變形曲線(GOODMAN, 1968) 42 圖 3.2 DDA塊體之平移示意圖(翁啟鐘,2003) 48 圖 3.3 DDA塊體之繞點轉動示意圖(翁啟鐘,2003) 49 圖 3.4 DDA塊體之正向變形示意圖 50 圖 3.5 DDA塊體之剪力變形示意圖(翁啟鐘,2003) 50 圖 4.1 落門試驗設備 59 圖 4.2 鋁塊與鋁棒尺寸 60 圖 4.3 攝影量測與輔助量測系統之比較 62 圖 4.4 單落門試驗之模型示意圖 64 圖 4.5 鋁棒堆疊方式 65 圖 4.6 不同鋁棒層數對地表沉陷量之影響 67 圖 4.7 堆疊1、3、7層鋁棒之破壞型態 68 圖 4.8 堆疊5層鋁棒之重現性 68 圖 4.9 H2/D=1.0時進行開挖 70 圖 4.10 不同覆土層中開挖 71 圖 4.11 單孔隧道模擬試驗之整體影響(H2/D=1.0) 73 圖 4.12 單孔隧道模擬試驗之整體影響(H2/D=1.0) 74 圖 4.13 雙孔隧道模擬試驗示意圖 75 圖 4.14 不同間距開挖對地表的影響(H2/D=1.0) 82 圖 4.15 不同間距開挖對地表的影響(H2/D=2.0) 83 圖 4.16 雙孔隧道模擬試驗之影體影響(S/D=0.0,H2/D=1.0) 84 圖 4.17 雙孔隧道模擬試驗之影體影響(S/D=0.5,H2/D=1.0) 85 圖 4.18 雙孔隧道模擬試驗之影體影響(S/D=1.0,H2/D=1.0) 86 圖 4.19 雙孔隧道模擬試驗之影體影響(S/D=0.0,H2/D=2.0) 88 圖 4.20 雙孔隧道模擬試驗之影體影響(S/D=0.5,H2/D=2.0) 90 圖 4.21 雙孔隧道模擬試驗之影體影響(S/D=1.0,H2/D=2.0) 92 圖 5.1 數值模擬模型 94 圖 5.2 PHASE2開挖模式 95 圖 5.3 DDA開挖模式 95 圖 5.4 節理勁度試驗結果 97 圖 5.5 PHASE2於地表沉陷分析結果(H2/D=1.0) 98 圖 5.6 PHASE2於地表沉陷分析結果(H2/D=2.0) 99 圖 5.7 PASE2於周圍岩盤變動分析結果(H2/D=1.0) 101 圖 5.8 PHASE2於周圍岩盤變動特性分析結果(H2/D=2.0) 102 圖 5.9 PHASE2於應力拱分析結果(H2/D=1.0) 103 圖 5.10 PHASE2於拱效應分析結果(H2/D=2.0) 104 圖 5.11 DDA分析之地表沉陷量 105 圖 5.12 DDA分析之地盤變動情形 107 圖 5.13 DDA之應力拱型態 108 圖 5.14 數值分析與試驗值比較 109 表 目 錄 表 2.1 沈陷槽寬徑比( )與隧道深徑比( )關係之 、 值 10 表 2.2 水平地下坑道開挖所導致地表最大沉陷之預測值 (SEH, 1965) 13 表 4.1 鋁塊與鋁棒之物理性質 60 表 4.2 單落門試驗之攝影量測精度 62 表 4.3 雙落門試驗之攝影量測精度 63 表 4.4 單落門試驗條件 65 表 4.5 相機率定參數 70 表 4.6 雙孔隧道模擬試驗條件 75 表 5.1 PHASE2材料參數 96 表 5.2 DDA材料參數 97 表 5.3 數值分析與試驗值比較(H2/D=1.0) 109

    1.王正忠,「以近景攝影測量進行模型式建物重建」,國立成功大學測量工程學系碩士論文,2002。
    2.王繼勝等人,「潛盾工法與地表沉陷」,地工技術雜誌,第二十三期,pp.72-83,1988。
    3.朱建南,「卵礫石層隧道開挖之個別元素法分析」,國立中興大學土木工程研究所碩士論文,1996。
    4.何維信,「航空攝影測量學」,大中國圖書公司印行,pp.519-521,1995。
    5.江國豐,「應用不連續變形分析法於順向岩坡穩定分析之探討」,國立高雄第一科技大學營建工程系碩士論文,2004。
    6.李榮松,「岩石隧道開挖分析之理論與實務」,中興工程,第23期,pp.20-51,1993。
    7.林志森,「不連續變形分析技術報告」,工業技術研究能源與資源研究所,2000。
    8.翁啟鐘,「初等工程地質學大綱」,地工技術叢書,財團法人地工技術研究發展基金會,2003。
    9.秦繼孔,「不連續變形分析在岩坡穩定之應用」,國立中興大學土木工程研究所碩士論文,1991。
    10.許銘峰,「攝影測量在離心模型試驗之應用-以離心隧道模型之地表沉陷量量測為例」,國立中央大學土木工程研究所碩士論文,2000。
    11.康俊祥,「不連續變形分析法在邊坡穩定之應用」,國立成功大學土木工程研究所碩士論文,1991。
    12.張汝珍,謝仁馨,「航空攝影測量學」,中華民國航空量測及遙感探測學會出版,台北市,pp.1~4,1985。
    13.梁福榮,「攝影測量應用於古蹟記錄和工程量測之研究」,國立成功大學土木工程研究所,2006。
    14.楊威秋,「二維數值法在隧道開挖變形分析之研究」,國立成功大學資源工程研究所碩士論文,1999。
    15.葛德治,「The issue of rock deformability in the stability analyses of rock slope」,第七屆大地工程學術研究討論會,pp.1259-1266,1997。
    16.陳秉嵩,「砂土層隧道之穩定性與土壓力分布」,國立中央大學土木工程學系碩士論文,2005。
    17.陳修、顧承宇,「不連續變形分析於岩石工程上之研究與應用」,財團法人中興工程顧問社,1995。
    18.陳秋宗,「台北市潛盾隧道施工對地盤沉陷之影響」,國立交通大學土木工程研究所碩士論文,1988。
    19.謝興宇,「半無限域節理岩體中雙孔隧道開挖之力學行為」,國立中興大學土木工程研究所碩士論文,1994。
    20.鄒子廉,「台灣地區隧道地質災害模式之研究」,國立中央大學應用地質研究所碩士論文,1993。
    21.鄭安成,「不連續變形分析於邊坡穩定上之應用」,國立中興大學土木工程研究所碩士論文,1995。
    22.Adachi, T., Kimura, M. et al. “Interaction between Multi Tunnels under Construction”, Eleventh South Asian Geotechnical Conference, pp. 51-60, 1993.
    23.Attewell, P.B., ”Engineering Contract. Site Investigation and Surface Movements in Tunneling Works. Soft-Ground Tunneling-Failures and Displacement.” A.A. Balkema, pp. 5-12, 1981.
    24.Atkinson, J.H. and D.M. Potts, “Stability of a Shallow Circle Tunnel in Cohesionless Soil,” Geotechnique 27, No.2, pp. 203-215, 1977.
    25.Argyris, J.H., and Kelsey, S., ”Engergy Theorems and Structural Analysis”, Butterworths, London.
    26.Bandis S.C., Lumsden A.C., and Barton N.R., “Fundamentals of Rock Joint Deformation,” Int. J. Rock Mech. Min. Sci. & Geotech. Abstr., pp. 249-268, 1983.
    27.Clough, G.W., and Schmidt, B., “Design and Performance of Excavations and Tunnels in Soft Clay,” In Soft Clay Engineering, pp. 600-634, 1981.
    28.Cording, E.J., and Hansmire, W.H., “Displacement around Soft Ground Tunnels,” Proc. 6th Panamerican Conf. on Soil Mechanics and Foundation Engineering, Buenon Aires, pp. 571-633, 1975.
    29.Clough, R.W., “The Finite Element Method in Plane Stress Analysis”, Proceedings, American Society of Civil Engineers, 2nd Conference on Electronic Computation, pp. 345-378, 1960.
    30.Gen-Hua Shi, ”Discontinuous Deformation Analysis: a new numerical model for the statics and dynamics of block systems”, Depatrment of Civil Engineering niversity of California, Berkeley, 1989.
    31.Goodman, R.E., ”Introduction to Rock Mechanics”, Second Edition, John Wiley Sons, New Yprk, pp. 156-164 and 233-249 1989.
    32.Hoke, E. and Brown, E.T., “Practical Estimates of Rock Mass”, Int. J. Rock Mech. Min. Sci. Vol.34, No.8, pp. 1165-1186, 1997.
    33.Hoke, E. and Brown, E.T., “The Hoke-Brown Failure Criterion-A 1988 Update”, Proceedings of 15th Canadian Rock Mechanics Symposium, pp. 31-38, 1988.
    34.Handy, R.L., ”The Arch in Soil Arching,” Joural of Geotechnical Engineering, ASCE, Vol. 3, No. 3, pp. 302-318, 1985.
    35.Hoke, E. and Brown, E.T., ”Empirical Strength Criterion for Rock Masses”, J. Geotech. Eng. Div., ASCE 106(Gt9), pp. 101, 1980.
    36.Kanji, M.A., ”Surface Displacement as a Conequence of Excavation Activities.” General Report of International Congress in Rock Mechanics, Montreal, Vol. 3, 1979.
    37.Mair, R.J., Taylor, R.N., and Bracegirdle, A., ”Subsurface Settlement Profiles above Tunnels in Clays”, Geotechnique, Thomas Telford, Vol.43, No. 2, pp. 315-320, 1993.
    38.NCB, “Subsidence Engineer’S Handbook”, National Coal Board, London, pp. 111, 1965 and 1975.
    39.O’Reilly, M.P., and New, G.M., ”Settlement above Tunnels in the United Kingdom: their Magnitude and Prediction”, Proceedings of Tunneling ’82, Institution of Mining and Metallurgy, London, pp. 173-181, 1982.
    40.O’Reilly, M.P., Riley, M.D., Barratt, D.A., and Johnson, P.E., ” Comparison of Settlements Resulting from Tree Methods of Tunneling in Loose Cohesionless Soil”, Proceedings of 2nd International Conference on Ground Movement and Structures, Cardiff, Wales, Pentech Press, London, pp. 359-376, 1980.
    41.Park, S.H., and Adachi, T., ”Laboratory Model Tests and Analyses on Tunneling in The Unconsolidated Ground with Inclined Layers”, Tunneling and Underground Space Technology, Vol. 17, pp. 181-193, 2002.
    42.Park, S.H., “Mechanical Behaviors of Ground with Inclined Layers during Tunnel Construction”, Ph.D. dissertation, Department of Civil Engineering, Faculty of Engineering Kyoto University, 2001.
    43.Peck, R.B.,” Deep excavation and Tunneling in Soft Ground, ”Seventh Int. Conf. Soil Mechanics and Foundation, Mexico City, pp. 225-290, 1969.
    44.Ryu M., Nakai T., Fuzimura K., Ohnishi Y., Nishiyama S., Yano T. and Lee D.H., “Application of Photogrammetry Method on a Slope Monitoring in Taiwan” ISRM International Symposium 3rd ARMS, pp. 787-790, 2004.
    45.Roncella R., Scaioni M. and Forlani G., “Application of Digital Photogrammetry in Geotechnics”, XXth ISPRS Congress, Istanbul, Turkey, Commission 5, pp. 93-89, 12-23 July 2004.
    46.Trollope, D.H., ”The Systematic Arching Theory Applied to The Stability Analysis of Embankments”, Proceedings, Fourth International Conference on Soil Mechanics and Foundation Engineering, Vol.2, pp. 382-388, 1957.
    47.Trollope, D.H., “The Mechanics of Discontinua or Clastic in Rock Problem”, in Rock Mechanics in Enginering Practice (ed. by Stagg, K. G. and O. C. Zienkiewicz): pp. 275-322, 1968.
    48.Terzaghi, K., ”Rock Defects and Loads on Tunnel Support”, Rock Tunneling with Steel Supports eds. R.V. Proctor and T. Whiter, Commercial Shearing Co., Ohio, pp. 15-99, 1946.
    49.Terzaghi, K., “Theoretical Soil Mechanics”, John Wiley and Sons, New York, pp. 66-76, 1943.
    50.Terzaghi, K., ”Stress Distribution in Dry and in Saturated Sand Above a Yielding Trap-Door”, Proceedings, First International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Massachusetts, pp. 307-311, 1936.
    51.Whittaker, B.N. and Reddish, D.J., “Subsidence Occurrence, Prediction and Control, Elsevier”, Amsterdam, Netherlands, pp. 33-50, 1989.
    52.Y. Ohinshi, and S. Nishiyama, “Recent Insights of Analyses Using Discontinuous Methods in The Rock Engineering in Japan”, Proceedings Of The 8th International Conference on Analysis of Discontinuous Deformation: Fundamentals and Applications to Mining & Civil Engineering-8, pp. 24, 2007.

    下載圖示 校內:2009-08-27公開
    校外:2009-08-27公開
    QR CODE