簡易檢索 / 詳目顯示

研究生: 尤啟中
Yu, Chi-Chung
論文名稱: 以化學氣相沈積法成長SiOx與TiO2一維奈米結構之研究
Growth of One-Dimensional SiOx and TiO2 Nanostructures Using Chemical Vapor Deposition
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 110
中文關鍵詞: 二氧化鈦氧化矽化學氣相沈積奈米一維
外文關鍵詞: TiO2, SiOx, nanorod, nanowire, CVD
相關次數: 點閱:74下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究第一部份為利用熱燈絲化學氣相沈積法,以SiCl4和H2為反應物,並由反應器之器壁所吸附的水氣做為氧的提供源,成長一維nc-Si/SiOx複合奈米線。實驗結果顯示在較低的基板溫度(~120℃)有利於成長奈米線,且其生長並不受基板的種類影響。而由SEM與TEM的觀察可証明此nc-Si/SiOx複合奈米線之成長機制並非由VLS機制或優勢成長方向所主導,且流場分佈亦不影響此奈米線之成長。EELS與TEM的分析可證實此奈米線之結構為以SiOx為主體其中包埋了矽奈米晶粒。藉由PL光譜的量測結果指出,其PL光譜涵蓋了波長420~585 nm,以高斯分佈分解可得三特性峰,分別為460 nm、490 nm以及530 nm。由文獻知460 nm的特性峰為氧空缺(neutral oxygen vacancy,O3≡Si-Si≡O3)所造成,490 nm特性峰與一般所認為由siloxene構結所貢獻並不相同,而530 nm特性峰可能由表面能態或是Si-H、Si-O-H相關鍵結所造成。
    第二部份則利用Thermal CVD法,以N2、O2及C10H14O5Ti為反應物來成長TiO2奈米結構。結果顯示隨著基板溫度不同以及距離Ti反應物的遠近,會形成不同形態以及不同晶相之產物。420℃~485℃為anatase薄膜,500℃~535℃為anatase nanowall,560℃~605℃為高方向性anatase 奈米柱,630℃~655℃且距Ti反應物較遠處則為rutile奈米柱。藉由TEM分析可知rutile及anatase奈米柱皆為單晶。利用UV-Vis吸收光譜繪製之Tauc plot可得anatase nanowall及奈米柱之光學能隙為3.2 eV而rutile 奈米柱則為3.0 eV。

    The growth characteristics of one dimensional nc-Si/SiOx composite nanowires using SiCl4/H2 as well as oxygen absorbed on chamber wall in a hot-filament chemical vapor deposition reactor were investigated in this study. The composite nanowires were grown on various substrates by non-VLS mechanism at lower substrate temperatures in comparison with polycrystalline film formed at high temperature. Structural and compositional characterizations of the nanowires by TEM and electron energy-loss spectroscopy (EELS) indicate that dendritic self-assembly of Si nanorods are embedded in the amorphous SiOx nanowires. PL analyses of the nc-Si/SiOx composite nanowires show a blue-green light emission at room temperature.

    Aligned rutlie and anatase TiO2 nanorods as well as anatase TiO2 nanowalls have been synthesized using a template- and catalyst-free CVD method. Formation of various crystal phases and morphologies of TiO2 nanostructures were dependent on the substrate temperatures as well as the distances between the Ti source and the substrates. Anatase films, nanowalls and well-aligned nanorods were formed at substrate temperatures of 420~485℃, 500~535℃ and 560~605℃, respectively. Rutile nanorods were grown at substrate temperatures of 630~655℃ in a longer distance between Ti source and substrate. TEM analyses indicate that rutile and anatase TiO2 nanorods were both single crystalline. Optical characterizations of the TiO2 nanostructures show that the bandgap of anatase and rutile phase were 3.2 as well as 3.0 eV, respectively.

    總目錄 中文摘要……………………………………………………………………………… I 英文摘要……………………………………………………………………………… II 誌謝……………………………………………………………………………………III 總目錄………………………………………………………………………………… V 圖目錄………………………………………………………………………………… X 表目錄…………………………………………………………………………………XVI 第一章 緒論……………………………………………………………………………1 1.1 前言…………………………………………………………………………1 1.2 一維奈米材料………………………………………………………………5 1.3 二氧化矽與奈米晶矽………………………………………………………6 1.4 二氧化鈦……………………………………………………………………10 1.5 研究動機……………………………………………………………………11 第二章 理論基礎………………………………………………………………………12 2.1化學氣相沈積………………………………………………………………12 2.1.1薄膜成長的模型……………………………………………………13 2.1.2化學氣相沈積動力學………………………………………………13 2.2熱燈絲化學氣相沈積………………………………………………………17 2.2.1熱燈絲化學氣相沈積法的發展……………………………………17 2.2.2熱燈絲化學氣相沈積法的優點……………………………………19 2.3 Thermal CVD………………………………………………………………19 2.4成長一維奈米結構之方法…………………………………………………19 2.4.1非等方向性奈米晶體之成長………………………………………20 2.4.2以液固界面促使一維奈米材料之成長……………………………21 2.4.2-1 Vapor-Liquid-Solid Method………………………………21 2.4.2-2 Solution-Liquid-Solid Method…………………………22 2.4.3使用具有奈米一維結構之模具……………………………………23 2.4.4使用適當的界面活性劑來控制其不同面向具有不同的成長速…25 2.4.5其他一維結構之成長方式…………………………………………27 2.4.5-1 螺旋差排導致一維成長(Screw dislocation growth)… 27 2.4.5-2 氧化物促進一維奈米線成長(Oxide assisted growth)…27 第三章 實驗參數與研究方法…………………………………………………………29 3.1實驗流程…………………………………………………………………29 3.2系統設計…………………………………………………………………30 3.2.1反應氣體輸送裝置…………………………………………………30 3.2.2反應器………………………………………………………………30 3.2.2-1 Hot-Wire CVD之反應器…………………………………… 30 3.2.2-2 Thermal CVD之反應器………………………………………31 3.2.3真空及排氣裝置……………………………………………………31 3.3實驗材料…………………………………………………………………34 3.3.1反應物………………………………………………………………34 3.3.2基板材料……………………………………………………………34 3.4基板前處理………………………………………………………………34 3.5鎢絲之前處理……………………………………………………………35 3.6實驗操作步驟……………………………………………………………35 3.6.1 Hot-Wire CVD系統之實驗操作步驟…………………………… 35 3.6.2 Thermal CVD系統之實驗操作步驟………………………………36 3.7分析與鑑定………………………………………………………………36 3.7.1掃描式電子顯微鏡分析……………………………………………36 3.7.2拉曼光譜分析………………………………………………………37 3.7.3紫外線-可見光吸收光譜儀……………………………………… 40 3.7.4 X光繞射分析儀……………………………………………………42 3.7.5穿透式電子顯微鏡…………………………………………………42 3.7.6紅外線測溫儀(pyrometer)……………………………………… 43 3.7.7電子順磁共振光譜(EPR)………………………………………… 44 第四章 以熱燈絲化學氣相沈積法(Hot-Wire CVD)成長SiOx一維奈米結構………46 4.1一維SiOx奈米線之成長…………………………………………………46 4.1.1基板溫度效應………………………………………………………46 4.1.2基板效應……………………………………………………………48 4.2結構分析…………………………………………………………………50 4.2.1奈米線之Raman光譜分析………………………………………… 50 4.2.2 XRD分析……………………………………………………………50 4.2.3奈米線之TEM微結構分析………………………………………… 50 4.2.4元素成份分析………………………………………………………51 4.2.4-1 EDS分析………………………………………………………51 4.2.4-2 EELS分析…………………………………………………… 56 4.3奈米線之PL光譜分析……………………………………………………59 4.3.1 PL@460nm………………………………………………………… 59 4.3.2 PL@490nm………………………………………………………… 62 4.3.3 PL@530nm………………………………………………………… 66 4.4成長機制…………………………………………………………………66 4.4.1氧的來源……………………………………………………………66 4.4.2成長機制討論………………………………………………………68 4.5結論………………………………………………………………………74 第五章 以Thermal CVD成長TiO2一維奈米結構…………………………………… 75 5.1製程參數對TiO2成長的影響……………………………………………75 5.1.1基板溫度的影響……………………………………………………75 5.1.2基板放置位置的影響………………………………………………83 5.1.3壓力效應……………………………………………………………83 5.2結構分析…………………………………………………………………87 5.2.1 XRD分析……………………………………………………………87 5.2.2拉曼光譜分析………………………………………………………87 5.2.3 TEM分析……………………………………………………………94 5.2.3-1銳鈦礦薄膜之TEM分析………………………………………94 5.2.3-2 Anatase nanowall之TEM分析…………………………… 94 5.2.3-3銳鈦礦奈米柱之TEM分析……………………………………98 5.2.3-4 Rutile nanorods之TEM分析………………………………98 5.2.4 光學性質…………………………………………………………101 5.3成長機制……………………………………………………………… 101 5.4結論…………………………………………………………………… 104 第六章 總結………………………………………………………………………… 105 第七章 參考文獻…………………………………………………………………… 108

    [1] Richard Feynman J. Micro. Syst. 1(1) 60-66 1992
    [2]蔡定平 科儀新知 21(5) 17-23 2000
    [3]汪建民 材料分析
    [4] A. P. Alivisatos Science 271 933-937 1996
    [5]陳東煌 奈米材料與奈米技術 上課講義
    [6]陳貴賢,吳季珍 物理雙月刊 23(6) 2001
    [7] Iijima Nature 354, 56–58 (1991).
    [8] J. Hu, T. W. Odom, C. M Lieber. Acc. Chem. Res. 32 435-445 1999
    [9] Mauricio Terrones, Wen Kuang Hsu, Harold W. Kroto, David R.M. Walton Topics in Current Chemistry 199 189-234 1999
    [10] David Appell Nature 419 553-555 2002
    [11] Y. Cui, C. M. Lieber Science 291 851–853 2001
    [12] Y. Huang, X. Duan, Y. Cui, C. M. Lieber Nano Lett. 2 101–104 2002
    [13] X. Duan, Y. Huang, C. M. Lieber Nano Lett. 2 487–490 2002
    [14] Peidong Yang Science 292 1897-1899 2001
    [15] Peidong Yang J. Phys. Chem. B 2001
    [16] Peidong Yang Business briefing:Global Photonics Applications & Technology 42
    [17] Yi Cui, Qingqiao Wei, Hongkun Park, Charles M. Lieber Science 293 1289–1292 2001
    [18] S. Nakamura, T. Mukai, and M. Senoh Appl. Phys. Lett. 64, 1687 1994
    [19] A. N. Trukhin J. Non-Cryst. Solids 149 32 1992
    [20] Hiroyuki Nishikawa Phys. Rev. B 45 586-591 1992
    [21] Nae-Man Park, Tae-Soo Kim, Seong-Ju Park Appl. Phys. Lett. 78(17) 2575-2577 2001
    [22] L. A. Knauss et al., Appl. Phys. Lett. 69, 25, 1996
    [23] H. Bach, D. Krause, Thin Films on Glass, Springer, Heidelberg, 1997.
    [24] H. Hiroshi et al., SPIE 67, 1758, 1992
    [25] P. Chrysicopoulou et al., Thin Solid Films 323, 188, 1998
    [26] H. Ko stlin et al., J. Non-Cryst. Solids 218, 347, 1997
    [27] J. Zhai et al., Ceram. Int. 25, 667, 1999
    [28] A. Fujishima et al.,Nature 238, 37, 1972
    [29] B. O. Regan et al., Nature 353, 737, 1991
    [30] G.. R. Comte et al., Sol. Energy Mater. Sol. Cells 58, 321, 1999
    [31] G.. Sauve et al., J. Phys. Chem. B 104, 3488, 2000
    [32] S. U. M. Khan et al., Science 297, 2243, 2002
    [33] M. R. Hoffman et al., Chem. Rev. 95, 69, 1995
    [34] D. S. Ollis, H. Al-Ekabi, Eds., Photocatalytic Puri.cation and Treatment of Water and Air, Elsevier, Amsterdam, 1993
    [35] E. Yagi et al., Phys. Rev. B 54, 7945, 1996
    [36] J.W. DeFord et al., J. Appl. Phys. 54, 889, 1983
    [37] L. Forro et al., J. Appl. Phys. 75, 633, 1994
    [38] H. Tang et al., J. Appl. Phys. 75 (1994) 2042.
    [39] Y. Matsumoto, et al., Science 291 (2001) 854.
    [40] James D. Plummer Silicon VLSI Technology
    [41] R. Kern, G. L. Lay, and J. J. Metois, Current Topics in Material Science 3, 135, 1979.
    [42] H. Wiesmann, A. K. Gosh, T. McMahon, and M. Strongin, J. Appl. Phys. 50, 3752 (1979).
    [43] H. Matsumura and H. Tachibana, Appl. Phys. Lett. 47, 833-835 (1985).
    [44] Younan Xia and Peidong Yang, Adv. Mater. 15, 353, 2003.
    [45] J.-J. Wu et al., J. Phys. Chem. B. 106, 9546, 2002.
    [46] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89, 1964.
    [47] K. Hiruma et al., Appl. Phys. Lett. 59, 431, 1991.
    [48] A. P. Alivisatos et al., Nature 404, 59, 2000.
    [49] A. P. Alivisatos et al., J. Am. Chem. Soc. 122, 12700, 2000.
    [50] X. S. Peng et al., Appl. Phys. A 74, 437, 2001.
    [51] X. S. Peng et al., J. Mater. Chem. 12, 1602, 2002.
    [52] S. T. Lee et al., J. Mater. Res. 14, 4503, 1999.
    [53] M. Ichikawa, J. Takeshita, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 38, L24, 1999.
    [54] T. Okada, T. Iwaki, H. Kasahara, K. Yamamoto, Jpn. J. Appl. Phys. 24, 161, 1985.
    [55] H. Kakinuma, M. Mohri, M. Sakamoto, T. Tsuruoka, J. Appl. Phys. 70, 7374, 1991.
    [56] L. Guo, Y. Toyoshima, M. Kondo, A. Matsuda, Appl. Phys. Lett. 75, 515, 1999.
    [57] L. D. Arsov et al., J. Raman Spectrosc. 22, 573, 1991.
    [58] Aicha A. R. Elshabini-Riad, Thin Film Technology Handbook, The McGraw-Hill Companies, Inc.
    [59]行政院國家科學委員會精密儀器發展中心,儀器總覽,化學分析儀器
    [60] M. M. Rahman et al., J. Phys. Chem. Solids 60, 201, 1999.
    [61]行政院國家科學委員會精密儀器發展中心,儀器總覽,基本物理量量測儀器
    [62] Hari Singh Nalwa, Silicon-Based Materials and Devices vol.2
    [63] Nathan R. Franklin and H. Dai, Adv. Mater. 12, 890, 2000.

    下載圖示 校內:2005-08-14公開
    校外:2006-08-14公開
    QR CODE