| 研究生: |
周堽豪 Jhou, Gung-Hao |
|---|---|
| 論文名稱: |
同源氧化銦鋅及孔洞氧化鋅奈米線陣列的熱電性質研究 Thermoelectric properties of homologous indium zinc oxide and porous zinc oxide nanowire arrays |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 氧化鋅 、熱電 、同源氧化銦鋅奈米線 |
| 外文關鍵詞: | homologous nanowire, thermoelectric, In2O3(ZnO)m nanowire, porous nanowire |
| 相關次數: | 點閱:70 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對四種不同結構的氧化鋅奈米線陣列,分別為水熱法製程的純氧化鋅奈米線陣列、氫氣退火的孔洞氧化鋅陣列、退火半小時的同源氧化銦鋅奈米線陣列以及退火兩小時的同源氧化銦鋅奈米線陣列進行整片奈米線陣列的熱電性質分析,利用PECS在奈米線陣列兩端上鍍上鈦金電極以進行整片的Seebeck係數以及利用兩點量測方式量測整片奈米線陣列的電導率而計算出奈米線陣列的熱電功率函數(thermoelectric power factor)。結構分析上分別用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、能量散佈光譜(EDX)以及X-Ray 繞射分析此四種不同氧化鋅奈米線陣列的表面形貌與其結構分析,並且探討其微結構以及組成之間的差異等等對於熱電參數的影響。其中氫氣退火的孔洞氧化鋅之導電度比水熱法的氧化鋅大4個數量級,且其熱導係數是四者奈米結構中最低,homologous In2O3(ZnO)n隨著退火時間越長,其賽貝克係數越大,最後本實驗特別針對整片量測與單根量測上的熱電性質差異提出直觀又合理的物理解釋機構。
In this work, we study thermoelectric properties of homologous In2O3(ZnO)m and porous nanowires synthesized by hydrothermal method.we use the solid-state diffusion process to create homologous In2O3(ZnO)m nanowires. Porous nanowires were grown in H2 annealing conditions. By comparing the structural difference of In2O3(ZnO)m and porous ZnO nanowires array, we can know how structural difference change conductivity, carrier concentration, Seebeck coefficient, figure of merit (ZT). As a result, we found out that porous ZnO nanowires compared with a typical ZnO nanowire by hydrothermal method possesses more superior electrical conductivity. As annealing duration increases, the Seebeck coefficient of homologous In2O3(ZnO)m increases. In order to let our samples can be commercialized in the future rather than an academic research. So we choose to measure thermoelectric properties of nanowires array instead of a single nanowire. Moreover,we figure out a Physical mechanism to successfully explain why there are difference Seebeck coefficient between array and single.
[1] A.D.Bass JC, "Milliwatt radioisotope power supply for space applications,"presented at the Proc. Int. Conf. Thermoelectr., Baltimore, pp. 521–524, (1999) .
[2] V. Leonov and R. J. M. Vullers, "Wearable Thermoelectric Generators for Body-Powered Devices," Journal of Electronic Materials, vol. 38, 7, pp.1491-1498, (2009).
[3] D. Lawrence Livermore National Laboratory, (2009).
[4] J. Sommerlatte, K. Nielsch , and H. Böttner, Physik Journal 6 (5) (2007).
[5]D. Kraemer, B. Poudel, H. P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. W. Wang, D. Z. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. F. Ren and G. Chen, Nat Mater 10 (7), 532-538 (2011).
[6] N. Wang, L. Han, H. C. He, N. H. Park and K. Koumoto, Energ Environ Sci 4 (9), pp.3676- 3679 (2011).
[7]L. Hicks and M. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 47, 19, pp. 12727-12731, 1993.
[8]L. Hicks and M. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical Review B, vol. 47, 24, pp. 16631-16634, 1993.
[9]R. Venkatasubramanian, et al., "MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications," Journal of Crystal Growth, vol. 170, 1-4, pp. 817-821, 1997.
[10]R. Venkatasubramanian, "Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures," Physical Review B, vol. 61, 4, pp. 3091-3097, 2000.
[11]R. Venkatasubramanian, et al., "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, vol. 413, 6856, pp. 597-602, 2001.
[12] F. J. DiSalvo, "Thermoelectric cooling and power generation," Science, vol. 285, 5428, pp. 703-706, 1999.
[13] A. Shakouri, "Recent Developments in Semiconductor Thermoelectric Physics and Materials," Annual Review of Materials Research, vol. 41, 1, pp. 399-431, 2011.
[14] M. Cutler, et al., "Electronic Transport in Semimetallic Cerium Sulfide," Physical Review, vol. 133, 4A, pp. A1143-A1152, 1964.
[15] D. M. Rowe, Thermoelectrics Handbook: Macro to Nano: CRC/To & Nano,2005.
[16] Richman.R, "Prospects for efficient thermoelectric materials in the near term," presented at the DARPA/DOE High Efficient Thermoelectric Workshop, San Diego, CA, 2002.
[17] K. Nielsch, et al., "Thermoelectric Nanostructures: From Physical Model
Systems towards Nanograined Composites," Advanced Energy Materials, vol.1, 5, pp. 713-731, 2011.
[18] Z. B. Zhang, et al., "Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays," Applied Physics Letters, vol. 73, 11, pp. 1589-1591, 1998.
[19] Z. B. Zhang, et al., "Electronic transport properties of single-crystal bismuth nanowire arrays," Physical Review B, vol. 61, 7, pp. 4850-4861, 2000.
[20] Y. M. Lin, et al., "Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires," Physical Review B, vol. 62, 7, pp.
4610-4623, 2000.
[21] X. Sun, et al., "Theoretical modeling of thermoelectricity in Bi nanowires,"
Applied Physics Letters, vol. 74, 26, pp. 4005-4007, 1999.
[22] C.-L. Chen, et al., "Fabrication and Characterization of Electrodeposited Bismuth Telluride Films and Nanowires," Journal of Physical Chemistry C, vol. 114, 8, pp. 3385-3389, 2010.
[23] J. H. Zhou, et al., "Thermoelectric properties of individual electrodeposited bismuth telluride nanowires," Applied Physics Letters, vol. 87, 13, p. 133109,
2005.
[24] X. B. Zhao, et al., "Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites," Applied
Physics Letters, vol. 86, 6, p. 062111, 2005.
[25] N. Mingo, "Thermoelectric figure of merit of II-VI semiconductor nanowires "Applied Physics Letters, vol. 88, 13, p. 139901, 2006.
[26] J. W. Roh, et al., "Size-dependent thermal conductivity of individual single-crystalline PbTe nanowires," Applied Physics Letters, vol. 96, 10, p.
103101, 2010.
[27]D. Y. Li, et al., "Thermal conductivity of individual silicon nanowires,"Applied Physics Letters, vol. 83, 14, pp. 2934-2936, 2003.
[28] U. Ozgur, et al., "A comprehensive review of ZnO materials and devices,"Journal of Applied Physics, vol. 98, 4, p. 041301, 2005.
[29] Y. Chen, D. M. Bagnall, Z. Zhu, T. Sekiuchi, K.-t. Park, K. Hiraga, T. Yao,S. Koyama, M. Y. Shen, T. Goto, Journal of Crystal Growth 1997, 181, 165.
[30] D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, T. Yao, Journal of Crystal Growth 1998, 184–185, 605.
[31] P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, Applied Physics
Letters 2003, 82, 1117.
[32] Kazunori Minegishi, Yasushi Koiwai, Yukinobu Kikuchi, Koji Yano,
Masanobu Kasuga, Azuma Shimizu, Japanese Journal of Applied Physics 1997,36, L1453.
[33] L. Vayssieres, Advanced Materials 2003, 15, 464.
[34] K. K. Lionel Vayssieres, Sten-Eric Lindquist, Anders Hagfeldt, Journal of
Physical Chemistry B,2001, 105, 3350.
[35] M. Guo, P. Diao, S. Cai, Journal of Solid State Chemistry 2005, 178, 1864.
[36] S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho, K. S. Lim, Applied Physics
Letters 1997, 70, 3516.
[37] G. Bruno, M. M. Giangregorio, G. Malandrino, P. Capezzuto, I. L. Fragalà,
M. Losurdo, Advanced Materials 2009, 21, 1700.
[38] T. M. Greene, W. Brown, L. Andrews, A. J. Downs, G. V. Chertihin, N.
Runeberg, P. Pyykko, The Journal of Physical Chemistry 1995, 99, 7925.
[39] G. Kresse, O. Dulub, U. Diebold, Physical Review B 2003, 68, 245409.
[40] J. Ghatak, J. H. Huang, P. C. Huang, Y. I. Shih, C. P. Liu, Journal of the Electrochemical Society 2012, 159, H239.
[41] K. P. Ong, et al., "Analysis of the thermoelectric properties of n-type ZnO,"Physical Review B, vol. 83, 11, p. 115110, 2011.
[42] Z. W. Yang, et al., "Geometry dependent current-voltage characteristics of ZnO nanostructures: A combined nonequilibrium Green's function and density
functional theory study," Applied Physics Letters, vol. 95, 19, p. 192101, 2009.
[43] C.-H. Lee, et al., "Thermoelectric power measurements of wide band gap semiconducting nanowires," Applied Physics Letters, vol. 94, 2, p. 022106,2009.
[44] S. C. Andrews, et al., "Atomic-level control of the thermoelectric properties in polytypoid nanowires," Chemical Science, vol. 2, 4, p. 706, 2011.
[45] Juarez L. F. Da Silva, Yanfa Yan, and Su-Huai Wei, Rules of Structure Formation for the Homologous InMO3(ZnO)n Compounds, PhysRevLett. 100, 255501 (2008)
[46] H. Kasper, Z. Anorg. Allg. Chem. 349, 113 (1967).
[47] P. J. Cannard and R. J. D. Tilley, J. Solid State Chem. 73,418 (1988).
[48] N. Kimizuka and E. Takayama, J. Solid State Chem. 40,109 (1981).
[49] N. Kimizuka, M. Isobe, and M. Nakamura, J. Solid State Chem. 116, 170 (1995).
[50] M. Isobe, N. Kimizuka, M. Nakamura, and T. Mohri, Acta Crystallogr. Sect. C 50, 332 (1994).
[51] Y. Yan, S. J. Pennycook, J. Dai, R. P. H. Chang, A. Wang, and T. J. Marks, Appl. Phys. Lett. 73, 2585 (1998).
[52] A. I. Boukai, et al., "Silicon nanowires as efficient thermoelectric materials,"Nature, vol. 451, 7175, pp. 168-171, 2008.
[53] A. I. Hochbaum, et al., "Enhanced thermoelectric performance of rough silicon nanowires," Nature, vol. 451, 7175, pp. 163-U5, 2008.
[54] A. Janotti and C. G. Van de Walle, "Fundamentals of zinc oxide as a semiconductor," Reports on Progress in Physics, vol. 72, 12, p. 126501, 2009.
[55] K. P. Ong, et al., "Analysis of the thermoelectric properties of n-type ZnO,"Physical Review B, vol. 83, 11, p. 115110, 2011.
[56] Jinyao Tang, Hung-Ta Wang, Dong Hyun Lee, Melissa Fardy, Ziyang Huo, Thomas P. Russell, and Peidong Yang Nano Letters 2010 10 (10), 4279-4283
[57] 黃博建, 銦摻雜及未摻雜之氧化鋅奈米線及奈米緞帶熱電性質之研究,國立成功大學 碩士論文,2012.
[58] J. G. L. Zhiyong Fan, Journal of Nanoscience and Nanotechnology 2005, 5,1561.
校內:2022-07-02公開