簡易檢索 / 詳目顯示

研究生: 鄭力誠
Jheng, Li-Cheng
論文名稱: 高溫質子交換膜燃料電池用高分子電解質膜的合成與性質之研究
Synthesis and Properties of A Novel Polymer Electrolyte Membrane for High-Temperature PEMFC
指導教授: 許聯崇
Hsu, L.C. Steve
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 106
中文關鍵詞: 直接甲醇燃料電池質子交換膜燃料電池甲醇滲透率質子導電度
外文關鍵詞: PBI, proton conductivity, DMFC, PEMFC, methanol permeability
相關次數: 點閱:87下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷酸摻雜PBI薄膜作為固態電解質薄膜可實現在PEMFC與DMFC的應用上。本研究,利用3’3-diaminobenzidine、2,5- Pyridinedicarboxylic-acid(2,5-PDA)與2,2-Bis(4-carboxyphenyl)- hexafluoropropane(HFA)等單體成功地聚合縮合出含氟含吡啶PBI共聚合物,並依單體比例不同可獲得三組組成不同的PBI共聚合物。並且利用溶液鑄模的方法製備PBI薄膜,以及將薄膜浸泡在磷酸的方式摻雜磷酸。以FTIR、1H-NMR及X-ray等分析鑑定合成出的三組PBI共聚合物之組成與結構。由於導入柔軟大基團含氟單體(HFA),PBI在DMAc中的溶解度大幅的改善。實驗數據顯示,導入含氟含吡啶單體後PBI仍保留了極佳的熱安定性與尺寸安定性,並且在6wt%甲醇水溶液中擁有3.1~4.2×10-8 cm2/s優良的甲醇滲透率,就如預期地是很好的甲醇抵抗材料。在質子導電度方面,導電度隨溫度與磷酸摻雜程度增加而增加,在160℃無水的環境下飽和磷酸摻雜程度的PBI擁有約6×10-4 S/cm的質子導電度,並且由實驗結果,推論PBI的質子傳導機制應是以Grotthuss mechanism為主而非Vehicle mechanism。機械性質方面,PBI共聚合物擁有約80Mpa的破斷應力與2GPa的初始彈性模數,很優良的拉伸強度。但是,當摻雜磷酸後,磷酸與磷酸所吸的水將會減弱PBI的機械強度。

    Polybenzimidazole(PBI) membrane doped with phosphoric acid was proposed as an solid electrolyte membrane for PEMFC and DMFC. In this study, fluorine-pyridine containing PBI copolymers were synthesized by copolymerization of 3’3-diaminobenzidine , 2,5-Pyridinedicarboxylic- acid(2,5-PDA) and 2,2-Bis(4-carboxyphenyl)-hexafluoropropane(HFA) with different molar ratio. PBI membranes were prepared by solution- casting and then doped by immersion into phosphoric acid. The structures of PBI copolymers were characterized by FTIR, 1H-NMR and X-ray. The solubility of PBI was significantly improved by the introduction of a flexible bulky group, HFA, into polymer backbone. The excellent thermal stablility and dimension stability of PBI were completely maintained. Additionally, the PBI copolymers exhibited the methanol permeability of 3.1~4.2×10-8 cm2/s in 6wt% methanol solution which show that they were still good methanol barrier materials as expected. The proton conductivity of phosphoric acid doped PBI is dependent on doping level and temperatures. Under anhydrous condition, the proton conductivity of saturated acid doped PBI membranes was about 6×10-4 S/cm at 160℃. From the results, it can be suggested that the proton conduction in PBI copolymers is governed by Grotthuss mechanism rather than Vehicle mechanism. The PBI copolymers exhibited good mechanical properties with tensile strength at about 80MPa and Young’s modulus at 2GPa. However, the mechanical properties of the acid doped PBI membranes were decreased in the presence of phosphoric acid or water which act as plasticizers.

    摘要..........................................................Ⅰ Abstract......................................................Ⅱ 誌謝..........................................................Ⅲ 目錄..........................................................Ⅳ 圖目錄........................................................Ⅷ 表目錄.........................................................XI 第一章 緒論....................................................1 1-1 前言.......................................................1 1-2 燃料電池的簡介.............................................2 1-2-1質子交換膜燃料電池........................................5 1-2-2直接甲醇燃料電池..........................................6 1-3 研究動機...................................................8 第二章 文獻回顧與原理.........................................10 2-1 燃料電池用高分子電解質膜的簡介............................10 2-2 無水系統質子傳導高分子的簡介..............................14 2-3 聚苯咪唑薄膜摻雜磷酸的質子傳導機制........................18 2-4 高溫質子交換膜燃料電池的優點..............................26 第三章 實驗方法與步驟.........................................29 3-1 實驗藥品..................................................29 3-2 實驗儀器..................................................29 3-3 實驗步驟..................................................30 3-3-1聚苯咪唑共聚合物的合成...................................30 A. 合成聚苯咪唑共聚合物PBI10703...............................32 B. 合成聚苯咪唑共聚合物PBI10505...............................33 C. 合成聚苯咪唑共聚合物PBI10307...............................33 3-3-2聚苯咪唑共聚合物薄膜的製備...............................34 3-3-3聚苯咪唑共聚合物薄膜摻雜磷酸的方法.......................35 3-4 結構鑑定..................................................36 3-4-1 紅外線光譜儀(FTIR)分析..................................36 3-4-2 核磁共振光譜(1H-NMR)分析................................38 3-4-3 X-ray繞射分析...........................................38 3-5 性質分析..................................................39 3-5-1 固有黏度測定............................................39 3-5-2 溶解度測試..............................................39 3-5-3 溶解度定性測試..........................................40 3-5-4 薄膜含磷酸量的測定......................................40 3-5-5 熱機械分析(TMA).........................................40 3-5-6 熱重損失分析(TGA).......................................41 3-5-7 動態機械分析(DMA).......................................41 3-5-8 甲醇滲透率測定..........................................42 3-5-9 交流阻抗分析(AC impedance)..............................43 3-5-10 薄膜拉伸機械性質分析...................................50 第四章 結果與討論.............................................51 4-1 共聚合物的合成與鑑定......................................51 4-1-1 合成....................................................51 4-1-2 FTIR分析................................................52 4-1-3 NMR分析.................................................55 4-1-4 X-ray繞射分析...........................................56 4-2 共聚合物的固有黏度........................................57 4-3 共聚合物溶解度測試........................................57 4-4 共聚合物薄膜製備與磷酸摻雜................................58 4-4-1 薄膜製備................................................58 4-4-2 磷酸摻雜................................................59 4-5 共聚合物熱性質分析........................................63 4-5-1 玻璃轉移溫度測定........................................63 4-5-2 熱重損失分析............................................64 4-5-3 熱膨脹係數測定..........................................65 4-6 共聚合物薄膜甲醇滲透率測定分析............................66 4-7 共聚合物薄膜摻雜磷酸之導電度分析..........................68 4-8 共聚合物薄膜機械性質分析..................................72 4-8-1 未摻雜磷酸薄膜拉伸強度分析..............................72 4-8-2 摻雜磷酸薄膜拉伸強度分析................................74 第五章 結論...................................................99 參考文獻......................................................101

    1.郭博堯, 全球化石能源危機時代與我國所面臨挑戰, 財團法人國家政策研究基金會-國改研究報告, 2002
    2.C. Song, Catalysis Today, 77 (2002) 17
    3.台灣燃料資訊網, http://www.tfci.org.tw/Fc/class.asp
    4.K. Kordesch, G. Simader, Fuel Cells and Their Application, 1996, VCH, New York
    5.衣寶廉, 燃料電池-原理與應用, 五南圖書出版公司, 2005
    6.N.W. Deluca, Y.A. Elabd, Journal of Polymer Science: Part B: Polymer Physics, 44 (2006) 2201
    7.B. Smitha, S. Sridhar, A.A. Khan, Journal of Membrane Science, 259 (2005) 10
    8.O. Savadogo, F.J.R. Varela, J. New Mater. Electrochem. Syst., 4, 2 (2001) 93
    9.B.S. Pivovar, Polymer, 47 (2006) 4194
    10.S.M. Aharoni , A.J. Signorelli, Journal of Applied Polymer Science, 23, 9 (1979) 2653
    11.M.F.H. Schuster, W.H. Meyer, Annual Review of Materials Research, 33 (2003) 233
    12.J.S. Wainright, J.T. Wang, D. WEng, R.F. Savinell, M. Litt, Journal of Electrochemical Society, 142, 7 (1995) L121
    13.Q. Li, H.A. Hjuler, N.J. Bjerrum, Journal of Applied Electrochemistry, 31, 7 (2001) 773
    14.K.D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, J. Maier, Electrochica Acta, 43 (1998) 1281
    15.M. Schuster, W.H. Meyer, G. Wegner, H.G. Herz, M. Ise, Solid State Ionics, 145 (2001) 85
    16.B.S. Pivovar, Y. Wang, E.L. Cussler, Journal of Membrane Science, 154 (1999) 155
    17.Y.-L. Ma, J.S. Wainright, M.H. Litt, R.F. Savinell, Journal of The Electrochemical Society, 151 , 1 (2004) A8
    18.H. Pu, G. Liu, Polymer for advanced technologies, 15 (2004) 726
    19.R. Bouchet, S. Miller, M. Duclot, J.L. Souquet, Solid State Ionics, 145 (2001) 69
    20.J.-L. Souquet, M. Duclot, M. Levy, Solid State Ionics , 85 (1996) 149
    21.J.D. Grotthuss, Ann. Chim. LVIII, 58 (1806) 54
    22.I. Alkorta, J. Elguero, Organic & Biomolecular Chemistry, 4 (2006) 3096
    23.Z. Zhou, R. Liu, J. Wang, S. Li, M. Liu, J.-L. Bre´das, The journal of physical chemistry A letters, 110, 7 (2006) 2323
    24.X. Glipa, B. Bonnet, D. J. Jones, J. Roziere, Journal of material chemistry, 9 (1999) 3045
    25.R. Bouchet, E. Siebert, Solid State Ionics, 118, (1999) 287
    26.J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song et al., Journal of Power Sources, 160 (2006) 872
    27.W.H.J. Hogarth, J.C. Diniz da Costa, G.Q. Lu, Journal of Power Sources, 142 (2005) 223
    28.Q.F. Li, R.H. He, J.O. Jensen, N.J. Bjerrum, Journal of The Electrochemiacl society, 150 (2003) A1599
    29.Y. Imai, K. Uno, Y. Iwakura, Makromol. Chem., 83 (1995) 179
    30.H.-H Wang, S.-P. Wu , Journal of Applied Polymer Science, 91 (2004) 378
    31.T.-S. Chung, Polymer engineering and science, 34, 5 (1994) 428
    32.邱志豪, 聚苯咪唑的合成及薄膜性質, 元智大學化工所碩士論文, 2004
    33.J.-L. Wang, M.-H. Lee, J. Yang, Polymer Bulletin, 55 (2005) 357
    34.S.-H. Hsiao, Y.-H. Chang, European Polymer Journal, 40 (2004) 1749
    35.D. J. Jones, J. Rozière, Journal of Membrane Science, 185 (2001) 41
    36.J. F. Rabek, Experimental Methods in Polymer Chemistry-Physical Principles and applications, 1980, John Wiley and Sons, New York
    37.楊昇晃, 微型燃料電池設計、製作與電化學組抗量測分析, 中山大學機械與機電工程所碩士論文, 2005
    38.陳盈助, 電解液配方對鋰離子電池性能之研究, 成功大學化工所碩士論文, 2002
    39.C.M.A. Brett, A.M.O. Brett, Electrochemistry-Principles, Methods and Applications, 1993, Oxford, New York
    40.Electrochemical capacitors, http://electrochem.cwru.edu/ed/encyc
    41.謝正悅、林慶炫、王春山, 科學發展月刊 第28卷 第11期 1990
    42.G. Lligadas, J.C. Ronda, M. Galla', V. Ca'diz, Journal of Polymer Science: Part A: Polymer Chemistry, 44 (2006) 5630
    43.M. Ravey, E.M. Pearce, Journal of Applied Polymer Science, 74 (1999) 1317
    44.Q. Li, R. He, R.W. Berg, H.A. Hjuler, N.J. Bjerrum, Solid State Ionics, 168 (2004) 177
    45.H.-X. Yang, Y.-F. Li, J.-G. Liu, S.-Y. Yang, D.-X. Yin, Journal of Applied Polymer Science, 91 (2004) 3981
    46.J.A. Asensio, S. Borro's, P. Go'mez-Romero, Journal of Polymer Science: Part A: Polymer Chemistry, 40 (2002) 3703
    47.L. Ojamäe, Journal of Colloid and Interface Science, 296 (2006) 71
    48.W.C. Wang, Applied Surface Science, 199 (2002) 52
    49.S. Bennour, F. Metref, S. Djadoun, Journal of Applied Polymer Science, 98 (2005) 806
    50.S. Valkama, T. Ruotsalainen, H. Kosonen, J. Ruokolainen, Macromolecules, 36 (2003) 3986
    51.R. Zhu, Y. Wang, W. He, European Polymer Journal, 41 (2005) 2088
    52.V. Kute, S. Banerjee , Journal of Applied Polymer Science, 103 (2007) 3025
    53.J.A. Asensio, P. Gomez-Romero, Fuel Cells, 5, 3 (2005) 340
    54.Q.-L. Wu, Z. Zhang, S.-Y. Gu, J.-H. Gong, Journal of Macromolecular Sciencew, Part A: Pure and Applied Chemistry, 43 (2006) 1787
    55.Q. Li, R. He, J.O.Jensen, N.J.Bjerrum, Fuel Cell, 4, 3 (2004) 147
    56.S. Qing, W. Huang, D. Yan, European Polymer Journal, 41 (2005) 1589
    57.R. J. Abraham, M. Reid, Journal of the chemical society, 2, (2002) 1081
    58.S.-W. Chuang, S. L.-C. Hsu, Journal of Polymer Science: Part A: Polymer Chemistry, 44 (2006) 4508
    59.H. Pu, Q. Liu, G. Liu, Journal of Membrane Science, 241 (2004) 169
    60.D. Likhatchev, C. Gutierrez-Wing, I. Kardash, R. Vera-Graziano, Journal of Applied Polymer Science, 59 (1996) 725
    61.A. Carollo, E. Quartarone, C. Tomasi, P. Mustarelli, F. Belotti, A. Magistris, Journal of Power Sources, 160 (2006) 175
    62.C. Hasiotis, V. Deimede, C. Kontoyannis, Electrochimica Acta, 46 (2001) 2401
    63.T.-S. Chunga, W.F. Guoa, Y. Liub, Journal of Membrane Science, 271 (2006) 221
    64.Product data sheet-Celazole PBI, http://www.bayplastics.co.uk/Product%20Materials/prod-eng-celazole
    65.Product properties for Celazole PBI, http://www.portplastics.com/plastics/highPerformance/ CelazolePBICMQUA
    66.R. He, Q. Li, A. Bach, J.O. Jensen, N.J. Bjerrum, Journal of Membrane Science, 277 (2006) 38
    67.L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E.-W. Choe, Fuel cells, 5, 2 (2005) 287
    68.H.G. Chae, S. Kumar, Journal of Applied Polymer Science, 100 (2006) 791
    69.S.C. Kumbharkar, P.B. Karadkar, U.K. Kharul, Journal of Membrane Science, 286 (2006) 161
    70.A. Z. Weber, J. Newman, Journal of The Electrochemical Society, 150 7 (2003) A1008
    71R. He, Q. Li, G. Xiao, N.J. Bjerrum, Journal of Membrane Science, 226 (2003) 169
    72.H. Pei, L. Hong, J.Y. Lee, Journal of Power Sources, 160 (2006) 949
    73.N. Agmon, Chemical Physics Letters, 244 (1995) 456
    74.M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, N. Ogata, Electrochimica Acta, 45 (2000) 1395
    75.D. Liu, S. Kyriakides, S.W. Case, J.J. Lesko,Y. Li, J.E. Mcgrath, Journal of Polymer Science: Part B: Polymer Physics, 44 (2006) 1453
    76.A.A. Deschamps, D.W. Grijpma, J. Feijen, Polymer, 42 (2001) 93335

    下載圖示 校內:2009-07-14公開
    校外:2017-07-14公開
    QR CODE