| 研究生: |
宋俊恩 Song, Chun-En |
|---|---|
| 論文名稱: |
光合建築-永續與數位設計流程之整合研究 Photosynthetic building - sustainable development and the integration of digital design process |
| 指導教授: |
鄭泰昇
Jeng, Tay-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 光合建築 、太陽能板與建築之整合 、整合設計 、環境模擬評估 |
| 外文關鍵詞: | Photosynthetic building, BIPV, Integrated design, Simulation assessment in environmental |
| 相關次數: | 點閱:150 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
永續設計已經成為全球重要的研究課題之一,本論文探討建築如何從耗能轉變成產能,形成一個獨立自給自足的能源發電系統,同時研究一個整合式之永續設計流程,將設計、分析、模擬之數位工具整合到一個"整合設計"(integrated design),探討如何有效率的產生永續設計之設計方案。
在論述方面,本論文提出「光合建築」的設計思維,讓建築如同植物一樣行光合作用,以太陽能窗做為建築的皮層,將太陽光轉 換為能源,並形成一個隔熱層,結合自體通風,有效降低室內熱得,且維持室內的空氣品質。太陽能立面的排列是 模仿葉序的生長方式,以"生成螺線"做為設計概念,使每片太陽能板不會影響到下一片,達到最佳的發電效益。
在實作方面,本研究先在成大建築系綠教室為"光合實驗體"實驗場域,教室外牆實際操作BIPV(太陽能板與建築立面的整合),探討窗戶發電之優勢與限制,並用數位工具模擬其各月份發電量,將其與實際量測的發電量做比較與分析,計算其誤差值,評估軟體模擬的準確性。
在設計案例操作上,論文最後以青年住宅做為「光合建築」的設計主題,設計四項目標: 太陽能立面、能源自給自足、自體通風、垂直綠化,透過「整合設計流程」(integrated design process),整合不同的設計因子,讓最後的成果符合設計的目標。
本論文透過論述、實作與設計案例操作,實際探討建築從事前規畫到設計定案,數位設計軟體如何轉化成幫助設計者判讀與決策的工具,經過分析軟體的評估與討論產生出永續設計之最佳的方案。
Sustainable design has become an important global research issue. This study explores how buildings turn from wasting energy to producing energy, forming independent and self-subsisting energy generating systems. Meanwhile, this study establishes an integrated sustainable design procedure to integrate digital tools of design, analysis, and simulationinto an “integrated design,” in order to explore how to effectively create a design alternative with sustainable design.
In terms of discourse, this paper proposes the design consideration of “photosynthetic buildings,” which enables buildings to carry out photosynthesis like plants, using solar power windows to serve as the skin of the buildings that can convert sunlight into energy while forming an insulating layer. Along with self-ventilation, it can effectively lower indoor heat and maintain indoor air quality. The upright solar panel arrangement has a “generative spiral” as the design concept, which imitations how leaves grow, thus, each solar panel would not affect the next one, thereby achieving optimal power generation effects.
In terms of practical application, this study first uses the National Cheng Kung University Department of Architecture Green Classroom as the experimental site for “photosynthetic experiment body,” where the classroom outer wall is used to operate the BIPV (integration of solar panels and architecture surfaces) in order to explore the advantages and limitations of window power generation. Digital tools are used to simulate monthly power generation, comparing it with actual measured power generation for analysis, to calculate the error value and evaluate accuracy of software simulation.
In the design case operations, this paper uses a youth residences as the design topic of a “photosynthetic building,” with four objectives: standing solar panel surfaces, self-sufficient energy, self-ventilation, and vertical greening. An integrated design process is used to integrate different design factors, thus, the final results conform to design objectives.
This study uses discourse, practical application, and design case operations to explore how digital design software becomes a useful designer tool for decision-making from planning to design completion stages, allowing evaluation and design of analytical software to produce the optimal alternative for sustainable design.
7group. (2009). The integrative design guide to green building : redefining the practice of sustainability: Hoboken, N.J.
Behling, S. (2008). Solar power : the evolution of solar architecture. Germany: Prestel.
Gould, J. R. G., Carol Grant. (2009). Animal Architects:Building and the Evolution of Intelligence . New York City:Perseus Books Group .
Kwok, A. and W. Grondzik (2006),The Green Studio Handbook: Environmental Strategies for Schematic Design, Architectural Press.
Keeler, M. (2009). Fundamentals of integrated design for sustainable building. Hoboken, N.J.: John Wiley & Sons.
Knott, D. R. (1996-2010 ). Fibonacci Numbers and Nature from http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html
Livio, M. (2003). The golden ratio : the story of phi, the world's most astonishing number Bantam Dell Pub Group.
Sick, F. and T. Erge [ed.](1996). Photovoltaics in Buildings : A Design Handbook for Architects and Engineers, Routledge.
葉昱均, 詹. (2008). 矽薄膜太陽電池製程與設備介紹.
片桐啟子、平野隆久. (2003). 橡實與松果 : 享受撿拾之樂. 臺北縣: 瑞昇文化.
白啟光. (2002). 費氏數列及黃金分割, from http://calculus.nctu.edu.tw/upload/calculus_web/maple/Site/carnival/fibonacci/index.htm
林沂品. (2010). 具自體通風效果太陽光電建築構造 ( Ventilated BIPV ) 之通風與節能效益分析.
胡湘玲. (2006). 太陽房子. 台北市: 天下遠見.
陳念祖. (2001). 高架地板置換式自然通風對室內通風效率之影響.
楊洪興, 周. (2009). 太陽能建築一體化技術與應用. 北京: 中國建築工業出版發行.
廖思善、劉瑞堂. (1999). 葉序:自然之美. 科學月刊.
環球網. (2008). 糖叶的光合作用过程, from http://www.luckup.net/show.aspx?page=2&&id=75303&cid=15