| 研究生: |
韓吟龍 Han, Yin-Lung |
|---|---|
| 論文名稱: |
以甲苯為主要基質現地好氧共代謝三氯乙烯之實驗室及現地研究 Laboratory and field studies for in-situ aerobic cometabolism of trichloroethylene using toluene as the primary substrate |
| 指導教授: |
郭明錦
Kuo, Ming-Ching Tom |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 三氯乙烯 、甲苯 、好氧共代謝 、微生態系 、現地 |
| 外文關鍵詞: | Aerobic cometabolism, TCE, Toluene, In-situ, Microcosm |
| 相關次數: | 點閱:242 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文整合以甲苯為主要基質好氧共代謝三氯乙烯之現地及實驗室研究。在現地擠注甲苯蒸氣及空氣於含水層,成功馴養現地甲苯分解菌,有效共代謝降解三氯乙烯。擠注甲苯蒸氣成功解決甲苯液體注入井附近因微生物過度成長所造成的井篩阻塞問題。在實驗室使用與模場含水層相同之河川黑砂(未受三氯乙烯污染)作為供試土壤,應用半連續培養泥漿法(semicontinuous slurry microcosm method)以甲苯馴養現地模場微生物族群,以微觀的角度深入探討甲苯分解菌好氧共代謝三氯乙烯的生物程序,比較實驗室微生態系與現地模場三氯乙烯生物降解之成效。根據微生物16S rDNA分子生物技術鑑定生物處理系統中甲苯分解菌,分離菌株HYL-QT1及HYL-QT2分別與Ralstonia sp. P-10及Pseudomonas putida相似度達99%及100%。根據單一菌株批次試驗結果顯示HYL-QT1(Ralstonia sp. P-10)及HYL-QT2(Pseudomonas putida)共代謝三氯乙烯一階反應速率常數皆為0.5/day。實驗室微生態系試驗三氯乙烯生物共代謝效率為46%。現地甲苯分解菌三氯乙烯生物共代謝效率高達90%以上。現地及實驗室三氯乙烯生物共代謝效率差異主要關鍵為甲苯存在生物處理系統有效反應時間的不同所致。在實驗室微生態系試驗中,甲苯存在的有效反應時間僅有1天;在現地模場試驗中,甲苯存在的有效反應時間為3天。根據甲苯基質多次注入試驗結果證實甲苯存在生物處理系統的有效反應時間愈長,三氯乙烯生物共代謝降解效率愈高。
The aim of this study is to integrate laboratory and pilot studies of aerobic cometabolism of TCE using toluene as the primary substrate. Delivery of toluene in a vapor state with air enhanced the growth of indigenous toluene-utilizing bacteria that would degrade TCE by aerobic cometabolism. Meanwhile, delivering toluene in a vapor state effectively reduced potential clogging near the injection points due to excessive microbial growth, which was observed in the field when the injection of neat toluene was employed. Using the same clean river sand employed for aquifer material at the in-situ pilot study, a semicontinuous slurry microcosm method was applied to confirmed the process of aerobic cometabolism of TCE using toluene as the primary substrate. Based on the nucleotide sequence of 16S rRNA genes, the toluene-utilizing bacteria in microcosms were identified, i.e., Ralstonia sp. P-10 and Pseudomonas putida. The first-order constant of TCE-degradation rate was 0.5/day for both Ralstonia sp. P-10 and Pseudomonas putida. The TCE cometabolic-biodegradation efficiency measured from the slurry microcosms was 46%. And over 90% removal of TCE was observed from the in-situ pilot study. The difference in the TCE cometabolic-biodegradation efficiency was likely due to the reactor configurations and the effective time duration of toluene presence in laboratory microcosms(1days)vs. in-situ pilot study(3 days). The results of microcosm experiments using different toluene-injection schedules supported the hypothesis. With a given amount of toluene injection, it is recommended to maximize the effective time duration of toluene presence in reactor design for TCE cometabolic degradation.
土壤分析手冊(Ch4-土壤質地)。中華土壤肥料學會主編。1993。
土壤分析手冊(Ch22-土壤生物活性)。中華土壤肥料學會主編。1993。
土壤肥力測定方法(Ch7-土壤有機物質)。台灣糖業研究所化驗服務中心。1993。
土壤中酸鹼值測定方法。行政院環境保護署。NIEA S410.60C, 1995。
水中揮發性有機化合物檢測方法-吹氣捕捉/氣相層析質譜儀。行政院環境保護署。NIEA W785.53B, 2003。
水中總菌落數檢測方法-塗抹法。行政院環境保護署。NIEA E203.54B, 2005。
呂淑慧、李季眉、盧至人。酚分解菌共代謝三氯乙烯之連續流試驗。第二十四屆廢水處理技術研討會論文集,481-492, 1999。
環境微生物檢測通則I-細菌。行政院環境保護署。NIEA E101.01C, 1999。
盧至人。地下水的污染整治。國立編譯館,台北。1997。
Alagappan G, and Cowan R. Substrate inhibition kinetics for toluene and benzene degrading pure cultures and a method for collection and analysis of respirometric data for strongly inhibited cultures. Biotechnology and Bioengineering, 83(7): 798-809, 2003.
Alvarez-Cohen L, and McCarty PL. Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Applied and Environmental Microbiology, 57(4): 1031-1037, 1991.
Alvarez-Cohen L, and Speitel Jr. GE. Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation, 12(2): 105-126, 2001.
Amann RI, Ludwig W, and Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1): 143–169, 1995.
Bagley DM, and Gossett JM. Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate-reducing enrichment cultures. Applied and Environmental Microbiology, 56(8): 2511-2516, 1990.
Ball BR, and Edwards MD. Air stripping VOCs from groundwater: process design considerations. Environmental Progress, 11(1): 39-48, 1992.
Bouwer EJ, Rittmann BE, and McCarty PL. Anaerobic degradation of halogenated 1- and 2-carbon organic compounds. Environmental Science and Technology, 15(5): 596-599, 1981.
Chang HL, and Alvarez-Cohen L. Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnology and Bioengineering, 45(5): 440-449, 1995a.
Chang HL, and Alvarez-Cohen L. Model for the Cometabolic Biodegradation of Chlorinated Organics. Environmental Science and Technology, 29(9): 2357-2367, 1995b.
Criddle CS. The kinetics of cometabolism. Biotechnology and Bioengineering, 41(11): 1048-1056, 1993.
Davis SN, and DeWiest RJM. Hydrogeology. John Wiley & Sons, Inc., New York, 156-166, 1966.
Dorigo U, Volatier L, and Humbert JF. Molecular approaches to the assessment of biodiversity in aquatic microbial communities. Water Research, 39(11): 2207-2218, 2005.
Eckenfelder Jr. WW. Water Quality Engineering for Practicing Engineers. Barnes & Noble, Inc., New York, 160-163, 1970.
Engebretson JJ, and Moyer CL. Fidelity of select restriction endonucleases in determining microbial diversity by terminal-restriction fragment length polymorphism. Applied and Environmental Microbiology, 69(8): 4823-4829, 2003.
Fan S, and Scow KM. Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil. Applied and Environmental Microbiology, 59(6): 1911-1918, 1993.
Fennell DE, and Gossett JM. Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environmental Science and Technology, 31(3): 918-926, 1997.
Fogel MM, Taddeo AR, and Fogel S. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Applied and Environmental Microbiology, 51(4): 720-724, 1986.
Freedman DL, and Gossett JM. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Applied and Environmental Microbiology, 55(9): 2144-2151, 1989.
Futamata H, Harayama S, and Watanabe K. Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria. Applied Microbiology and Biotechnology, 55(2): 248-253, 2001.
Gavaskar AR. Design and construction techniques for permeable reactive barriers. Journal of Hazardous Materials, 68(1): 41-71, 1999.
Han YL, Kuo MC Tom , Tseng IC, and Lu CJ. Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene. Accepted by Journal of Hazardous Materials, 2007.
Heald S, and Jenkins RO. Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Applied and Environmental Microbiology, 60(12): 4634-4637, 1994.
Hinchee RE. Air Sparging for Site Remediation. CRC Press, Inc., USA, 1-13, 1994.
Hopkins GD, Munakata J, Semprini L, and McCarty PL. Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bioremediation by phenol-oxidizing microorganisms. Environmental Science and Technology, 27(12): 2542-2547, 1993a.
Hopkins GD, Semprini L, and McCarty PL. Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms. Applied and Environmental Microbiology, 59(7): 2277-2285, 1993b.
Hopkins GD, and McCarty PL. Filed evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environmental Science and Technology, 29(6): 1628-1637, 1995.
Jenal-Wanner U, and MaCarty PL. Development and evaluation of semicontinuous slurry microcosms to simulate in situ biodegradation of trichloroethylene in contaminated aquifers. Environmental Science and Technology, 31(10): 2915-2922, 1997.
Kelly CJ, Bienkowski PR, and Sayler GS. Kinetic analysis of a tod-lux bacterial reporter for toluene degradation and trichloroethylene cometabolism. Biotechnology and Bioengineering, 69(3): 256-265, 2000.
Kleopfer RD, Easley DM, Haas Jr. BB, Deihl TG, Jackson DE, and Wurrey CJ. Anaerobic degradation of trichloroethylene in soil. Environmental Science and Technology, 19(3): 277-280, 1985.
Kuo MC Tom, Liang KF, Han YL, and Fan KC. Pilot studies for in-situ aerobic cometabolism of trichloroethylene using toluene-vapor as the primary substrate. Water Research, 38(19): 4125-4134, 2004.
Kuo MC Tom, Chen CM, Lin CH, Fang HC, and Lee CH. Surveys of volatile organic compounds in soil and groundwater at industrial sites in Taiwan. Bulletin of Environmental Contamination and Toxicology, 65(5): 654-659, 2000.
Landa AS, Sipkema EM, Weijma J, Beenackers AACM, Dolfing J, and Janssen DB. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Applied and Environmental Microbiology, 60(9): 3368-3374, 1994.
Leahy JG, Byrne AM, and Olsen RH. Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Applied and Environmental Microbiology, 62(3): 825-833, 1996.
Lee CY, and Liu WD. The effect of salinity conditions on kinetics of trichloroethylene biodegradation by toluene-oxidizing cultures. Journal of Hazardous Materials, B137: 541-549, 2006.
Little CD, Palumbo AV, Herbes SE, Lidstrom ME, Tyndall RL, and Gilmer PJ. Trichloroethylene biodegradation by a methane-oxidizing bacterium. Applied and Environmental Microbiology, 54(4): 951-956, 1988.
Liu WT, Marsh TL, Cheng H, and Forney LJ. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 63(11): 4516-4522, 1997.
Lu CJ, Lee CM, and Chung MS. The comparison of trichloroethylene removal rates by methane- and aromatic-utilizing microorganisms. Water Science and Technology, 38(7): 19-24, 1998.
Lu CJ, and Lee MS. The effect of toluene on the cometabolic thrichloroethylene removal from soil. Journal of the Chinese Institute of Environmental Engineering, 13(1): 7-15, 2003.
Maier RM, Pepper IL, and Gerba CP. Environmental Microbiology. Academic Press, San Diego, CA, USA, 2000.
Mars AE, Prins GT, Wietzes P, Koning W de, and Janssen DB. Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria. Applied and Environmental Microbiology, 64(1): 208-215, 1998.
Maymo-Gatell X, Tandoi V, Gossett JM, and Zinder SH. Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Applied and Environmental Microbiology, 61(11): 3928-3933, 1995.
Mazur CS, and Jones WJ. Hydrogen concentrations in sulfate-reducing estuarine sediments during pce dehalogenation. Environmental Science and Technology, 35(24): 4783-4788, 2001.
McCarty PL. Stoichiometry of biological reactions. Progress in Water Technology, 7(1): 157-172, 1975.
McCarty PL, Goltz MN, Hopkins GD, Dolan ME, Allan JP, Kawakami BT, and Carrothers TJ. Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environmental Science and Technology, 32(1): 88-100, 1998.
Middeldorp PJM, Luijten MLGC, van de Pas BA, van Eekert MHA, Kengen SWM, Schraa G, and Stams AJM. Anaerobic Microbial Reductive Dehalogenation of Chlorinated Ethenes. Bioremediation Journal, 3(3): 151-169, 1999.
Miller DN, Bryant JE, Madsen EL, and Ghiorse WC. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Applied and Environmental Microbiology, 65(11): 4715-4724, 1999.
Monod J. The growth of bacteria cultures. Annual Review of Microbiology, 3: 371, 1949.
Muyzer G, Waal EC de, and Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3): 695-700, 1993.
Muyzer G, and Smalla K. Application of denaturing gradient gel electrophoresis(DGGE)and temperature gradient gel electrophoresis(TGGE)in microbial ecology. Antonie van Leeuwenhoek, 73(1): 127-141, 1998.
Nakamura K, Ishida H, and Iizumi T. Constitutive trichloroethylene degradation led by tac promoter chromosomally integrated upstream of phenol hydroxylase genes of Ralstonia sp. KN1 and its nucleotide sequence analysis. Journal of Bioscience and Bioengineering, 89(1): 47-54, 2000.
Nelson MJK, Montgomery SO, O’Neill EJ, and Pritchard PH. Aerobic metabolism of trichloroethylene by a bacterial isolate. Applied and Environmental Microbiology, 52(2): 383-384, 1986.
Nelson MJK, Montgomery SO, Mahaffey WR, and Pritchard PH. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Applied and Environmental Microbiology, 53(5): 949-954, 1987.
Nelson MJK, Montgomery SO, and Pritchard PH. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Applied and Environmental Microbiology, 54(2): 604-606, 1988.
Oldenhuis R, Vink RLJM, Janssen DB, and Witholt B. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Applied and Environmental Microbiology, 55(11): 2819-2826, 1989.
Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, and Stahl DA. Microbial ecology and evolution: a ribosomal RNA approach. Annual Review of Microbiology, 40: 337-365, 1986.
Rabideau AJ, Blayden JM, and Ganguly C. Field performance of air-sparging system for removing TCE from groundwater. Environmental Science and Technology, 33(1): 157-162, 1999.
Rittmann BE, and McCarty PL. Environmental biotechnology: principles and applications. McGraw-Hill Book Co., New York, 645, 2001.
Roberts PV, Hopkins GD, Mackay DM, and Semprini L. A field evaluation of in-situ biodegration of chlorinated ethenes: Part 1, methodology and field site characterization. Ground Water, 28(4): 591-604, 1990.
Schaumburg FD. Banning trichloroethylene: responsible reaction or overkill? Environmental Science and Technology, 24(1): 17-22, 1990.
Schroth MH, Oostrom M, Wietsma TW, and Istok JD. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties. Journal of Contaminant Hydrology, 50(1-2): 79-98, 2001.
Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, and Nakamura K. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology, 144: 2655-2665, 1998.
Semprini L, Roberts PV, Hopkins GD, and McCarty PL. A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 2, results of biostimulation and biotransformation experiments. Ground Water, 28(5): 715-727, 1990.
Semprini L, Hopkins GD, Roberts PV, Grbic-Galic D, and McCarty PL. A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 3, studies of competitive inhibition. Ground Water, 29(2): 239-250, 1991.
Semprini L, and McCarty PL. Comparison between model simulations and field results for in-situ biorestoration of chlorinated aliphatics: Part 1. Biostimulation of methanotrophic bacteria. Ground Water, 29(3): 365-374, 1991.
Semprini L, and McCarty PL. Comparison between model simulations and field results for in-situ biorestoration of chlorinated aliphatics: Part 2. Cometabolic transformations. Ground Water, 30(1): 37-44, 1992.
Shields MS, Montgomery SO, Cuskey SM, Chapman PJ, and Pritchard PH. Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene. Applied and Environmental Microbiology, 57(7): 1935-1941, 1991.
Speitel Jr. GE, and McLay DS. Biofilm reactors for treatment of gas streams containing chlorinated solvents. Journal of Environmental Engineering, 119(4): 658-678, 1993.
van Eekert MHA, Schröder TJ, van Rhee A, Stams AJM, Schraa G, Field JA. Constitutive dechlorination of chlorinated ethenes by a methanol degrading methanogenic consortium. Bioresource Technology, 77(2): 163-170, 2001.
Vogel TM, and McCarty PL. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Applied and Environmental Microbiology, 49(5): 1080-1083, 1985.
Vogel TM, Criddle CS, and McCarty PL. Transformation of halogenated aliphatic compounds. Environmental Science and Technology, 21(8): 722-736, 1987.
Wackett LP, and Gibson DT. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Applied and Environmental Microbiology, 54(7): 1703-1708, 1988.
Wackett LP, and Householder SR. Toxicity of thrichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase. Applied and Environmental Microbiology, 55(10): 2723-2725, 1989.
Wilson JT, and Wilson BH. Biotransformation of trichloroethylene in soil. Applied and Environmental Microbiology, 49(1): 242-243, 1985.
Yang Y, and McCarty PL. Biologically enhanced dissolution of tetrachloroethene DNAPL. Environmental Science and Technology, 34(14): 2979-2984, 2000.