| 研究生: |
潘怡文 Pan, Yi-Wun |
|---|---|
| 論文名稱: |
石斑魚生長相關蛋白-43基因選殖,特性分析與作為生物標記探討神經壞死病毒在魚類神經系統之感染 Molecular cloning, characterization of the grouper (Epinephelus spp.) growth associated protein-43 and used as a bio-marker to explore NNV infection in fish nervous system |
| 指導教授: |
楊惠郎
Yang, Huey-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 石斑魚 、生長相關蛋白-43 、神經壞死病毒 |
| 外文關鍵詞: | grouper, growth-associated protein-43, nervous necrosis virus (NNV) |
| 相關次數: | 點閱:142 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生長相關蛋白-43 (GAP-43) 會高度表現於正在發育與再生的神經元軸突生長錐 (axonal growth cone),其功能為神經元軸突延伸之誘導因子,因此在哺乳與兩棲類動物的研究中,GAP-43常被運用來作為評估個體之神經元發育與再生的生物標記,然而至今魚類相關研究甚少。為了解石斑魚神經發育與再生情形,本篇研究選殖出石斑魚 (Epinephelus spp.)之GAP-43基因作為生物標記,並分析魚苗與幼魚各時期神經發育及視神經損傷後修復期之GAP-43基因表現情形。研究結果顯示隨著魚齡增加,GAP-43 基因表現量會逐漸下降;而在視神經損傷模式中,GAP-43基因表現量會再度升高,於損傷後5天到達高峰,最大表現量為損傷前的22.60倍,接著在損傷後30天內逐漸下降至正常值。實驗中亦利用視神經損傷模式使魚體視神經再度處於高度生長階段,模擬魚苗時期神經生長情形,並以神經壞死病毒 (Nervous necrosis virus, NNV) 進行腹腔攻毒實驗,以了解魚類神經發育與再生與神經趨性病毒NNV的關係。點帶石斑魚和龍膽石斑魚實驗結果皆顯示當視神經再生時,其眼睛NNV平均表現量高於視神經未再生組,並可高達14.25倍。由免疫組織化學染色的結果亦發現,GAP-43蛋白於石斑魚眼部表現位置與NNV外鞘蛋白表現位置相仿。
由以上結果證實,本篇選殖之石斑魚GAP-43基因與其他物種之GAP-43重要的基因特性類似,可於神經再生與發育時期高度表現,故GAP-43可在石斑魚中作為一良好的神經發育與視神經再生之生物標記。且利用GAP-43作為生物標記,其結果推測點帶石斑魚與龍膽石斑魚之神經元的成熟度與NNV感受性有關。
Growth-associated protein-43 (GAP-43) has been found that is highly expressed in developing and regenerating axonal growth cones. GAP-43 is involved in regulating growth of axon terminals. Therefore, GAP-43 is a neuron-specific bio-marker extensively used to detect developing and regenerating nervous system in mammals and amphibians. However, studies in fish are scarce. To realize the neuronal development and regeneration in grouper (Epinephelus spp.), grouper GAP-43 was cloned in this study and used as a bio-marker to investigate grouper neuronal development in larval stage, juvenile stage and optic nerve regeneration after optic nerve injury. Results showed that GAP-43 mRNA expression decreased as age increased. After optic nerve transection, GAP-43 mRNA expression peaked at 5th day reaching to 22.60-fold compared with the control level without optic nerve injury and gradually decreased to the control level at 30th day. Optic nerves in fish returned to the high growth state through optic nerve transection to mimic the neuronal growth during larval stage. After optic nerve transection, groupers were NNV challenged by intraperitoneal injection to investigate the relationship between fish neuronal growth and the susceptibility to NNV infection. Results in orange-spotted grouper and giant grouper both showed that NNV RNA2 average expression level in eye during optic nerve regeneration was higher than eye without optic nerve regeneration that could increase to 14.25-fold. In grouper, immunohistochemistry (IHC) results indicated that the localization area in eye of GAP-43 protein was similar to NNV coat protein.
Our results show the characteristics of grouper GAP-43 are similar to other species that GAP-43 is highly expressed in developing and regenerating stages. GAP-43 is an ideal bio-marker for study of neuronal development and optic nerve regeneration in grouper. Using GAP-43 as a bio-marker, the results also suggest the susceptibility of grouper to NNV infection may be related to the neuronal maturity.
Aigner, L., S. Arber, J. P. Kapfhammer, T. Laux, C. Schneider, F. Botteri, H. R. Brenner and P. Caroni (1995). "Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice." Cell 83(2): 269-278.
Aigner, L., Caroni, P (1995). "Absence of persistent spreading, branching, and adhesion in GAP-43-depleted growth cones." The Journal of Cell Biology 128: 647-660.
Amor, S., M. F. Scallan, M. M. Morris, H. Dyson and J. K. Fazakerley (1996). "Role of immune responses in protection and pathogenesis during Semliki Forest virus encephalitis." Journal of General Virology 77 ( Pt 2 ): 281-291.
Appenzeller-Herzog, C. and H. P. Hauri (2006). "The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function." Journal of Cell Science 119(Pt 11): 2173-2183.
Basi, G. S., R. D. Jacobson, I. Virag, J. Schilling and J. H. Skene (1987). "Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth." Cell 49(6): 785-791.
Becker, C. G. and T. Becker (2007). "Growth and pathfinding of regenerating axons in the optic projection of adult fish." Journal of Neuroscience Research 85(12): 2793-2799.
Becker, C. G. and T. Becker (2008). "Adult zebrafish as a model for successful central nervous system regeneration." Restorative Neurology Neuroscience 26(2-3): 71-80.
Benowitz, L. I. and N. I. Perrone-Bizzozero (1991). "The relationship of GAP-43 to the development and plasticity of synaptic connections." Annals of the New York Academy Sciences 627: 58-74.
Benowitz, L. I., N. I. Perrone-Bizzozero and S. P. Finklestein (1987). "Molecular properties of the growth-associated protein GAP-43 (B-50)." Journal of Neurochemistry 48(5): 1640-1647.
Benowitz, L. I. and A. Routtenberg (1997). "GAP-43: an intrinsic determinant of neuronal development and plasticity." Trends in Neurosciences 20(2): 84-91.
Bernhardt, R. R. (1999). "Cellular and molecular bases of axonal regeneration in the fish central nervous system." Experimental Neurology 157(2): 223-240.
Chapouton, P., R. Jagasia and L. Bally-Cuif (2007). "Adult neurogenesis in non-mammalian vertebrates." Bioessays 29(8): 745-757.
Denny, J. B. (2006). Molecular mechanism, biological actions, and neuropharmacology of the growth-associated protein GAP-43. Current Neuropharmacology. 4: 293-304.
Erzurumlu, R. S., S. Jhaveri and L. I. Benowitz (1990). "Transient patterns of GAP-43 expression during the formation of barrels in the rat somatosensory cortex." The Journal of Comparative Neurology 292(3): 443-456.
Fawcett, J. (2006). "Overcoming inhibition in the damaged spinal cord." Journal of Neurotrauma 235: 870-885.
Fazakerley, J. K., S. Pathak, M. Scallan, S. Amor and H. Dyson (1993). "Replication of the A7(74) strain of Semliki Forest virus is restricted in neurons." Virology 195(2): 627-637.
Feuer, R., I. Mena, R. R. Pagarigan, S. Harkins, D. E. Hassett and J. L. Whitton (2003). "Coxsackievirus B3 and the neonatal CNS: the roles of stem cells, developing neurons, and apoptosis in infection, viral dissemination, and disease." The American Journal of Pathology 163(4): 1379-1393.
Fujimori, K. E., T. Kawasaki, T. Deguchi and S. Yuba (2008). "Characterization of a nervous system-specific promoter for growth-associated protein 43 gene in Medaka (Oryzias latipes)." Brain Research 1245: 1-15.
Goldberg, J. L. (2003). "How does an axon grow?" Genes Dev 17(8): 941-958.
Gomez, D. K., S. Matsuoka, K. Mori, Y. Okinaka, S. C. Park and T. Nakai (2009). "Genetic analysis and pathogenicity of betanodavirus isolated from wild redspotted grouper Epinephelus akaara with clinical signs." Archives of Virology 154(2): 343-346.
Harman, A. M., J. Rodger, A. Ahmat, C. Thomas, C. Bartlett, P. Chen, S. A. Dunlop and L. D. Beazley (2003). "PSA-NCAM is up-regulated during optic nerve regeneration in lizard but not in goldfish." Experimental Neurology 182(1): 180-185.
Hayashi, N., M. Matsubara, K. Titani and H. Taniguchi (1997). "Circular dichroism and 1H nuclear magnetic resonance studies on the solution and membrane structures of GAP-43 calmodulin-binding domain." The Journal of Biological Chemistry 272(12): 7639-7645.
He, Q., E. W. Dent and K. F. Meiri (1997). "Modulation of actin filament behavior by GAP-43 (neuromodulin) is dependent on the phosphorylation status of serine 41, the protein kinase C site." The Journal of Neuroscience 17(10): 3515-3524.
Hens, J. J., F. Benfenati, H. B. Nielander, F. Valtorta, W. H. Gispen and P. N. De Graan (1993). "B-50/GAP-43 binds to actin filaments without affecting actin polymerization and filament organization." Journal of Neurochemistry 61(4): 1530-1533.
Kaneda, M., M. Nagashima, K. Mawatari, T. Nunome, K. Muramoto, K. Sugitani and S. Kato (2010). "Growth-Associated Protein43 (GAP43) Is a Biochemical Marker for the Whole Period of Fish Optic Nerve Regeneration." Advances in Experimental Medicine and Biology 664: 97-104.
Kaneda, M., M. Nagashima, T. Nunome, T. Muramatsu, Y. Yamada, M. Kubo, K. Muramoto, T. Matsukawa, Y. Koriyama, K. Sugitani, I. H. Vachkov, K. Mawatari and S. Kato (2008). "Changes of phospho-growth-associated protein 43 (phospho-GAP43) in the zebrafish retina after optic nerve injury: a long-term observation." Neuroscience Research 61(3): 281-288.
Koriyama, Y., K. Homma, K. Sugitani, Y. Higuchi, T. Matsukawa, D. Murayama and S. Kato (2007). "Upregulation of IGF-I in the goldfish retinal ganglion cells during the early stage of optic nerve regeneration." Neurochemistry International 50(5): 749-756.
Leon, S., Y. Yin, J. Nguyen, N. Irwin and L. I. Benowitz (2000). "Lens injury stimulates axon regeneration in the mature rat optic nerve." The Journal of Neuroscience 20(12): 4615-4626.
Liu, Y., D. A. Fisher and D. R. Storm (1994). "Intracellular sorting of neuromodulin (GAP-43) mutants modified in the membrane targeting domain." The Journal of Neuroscience 14(10): 5807-5817.
Meiri, K. F., J. L. Saffell, F. S. Walsh and P. Doherty (1998). "Neurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43 (GAP-43) function and is associated with GAP-43 phosphorylation in growth cones." The Journal of Neuroscience 18(24): 10429-10437.
Meyer, R. L., K. Sakurai and E. Schauwecker (1985). "Topography of regenerating optic fibers in goldfish traced with local wheat germ injections into retina: evidence for discontinuous microtopography in the retinotectal projection." The Journal of Comparative Neurology 239(1): 27-43.
Miranda-Saksena, M., R. A. Boadle, A. Aggarwal, B. Tijono, F. J. Rixon, R. J. Diefenbach and A. L. Cunningham (2009). "Herpes simplex virus utilizes the large secretory vesicle pathway for anterograde transport of tegument and envelope proteins and for viral exocytosis from growth cones of human fetal axons." Journal of Virology 83(7): 3187-3199.
Munday, B. L., J. Kwang and N. Moody (2002). "Betanodavirus infections of teleost fish: a review." Journal of Fish Diseases 25(3): 127-142.
Munday, B. L., J. S. Langdon, A. Hyatt and J. D. Humphrey (1992). "Mass Mortality Associated with a Viral-Induced Vacuolating Encephalopathy and Retinopathy of Larval and Juvenile Barramundi, Lates-Calcarifer Bloch." Aquaculture 103(3-4): 197-211.
Oliver, K. R. and J. K. Fazakerley (1998). "Transneuronal spread of Semliki Forest virus in the developing mouse olfactory system is determined by neuronal maturity." Neuroscience 82(3): 867-877.
Oliver, K. R., M. F. Scallan, H. Dyson and J. K. Fazakerley (1997). "Susceptibility to a neurotropic virus and its changing distribution in the developing brain is a function of CNS maturity." Journal of Neurovirology 3(1): 38-48.
Pakingking, R., Jr., N. B. Bautista, E. G. de Jesus-Ayson and O. Reyes (2010). "Protective immunity against viral nervous necrosis (VNN) in brown-marbled grouper (Epinephelus fuscogutattus) following vaccination with inactivated betanodavirus." Fish & Shellfish Immunology 28(4): 525-533.
Reinhard, E., E. Nedivi, J. Wegner, J. H. Skene and M. Westerfield (1994). "Neural selective activation and temporal regulation of a mammalian GAP-43 promoter in zebrafish." Development 120(7): 1767-1775.
Roth, L. W., P. Bormann, C. Wiederkehr and E. Reinhard (1999). "Beta-thymosin, a modulator of the actin cytoskeleton is increased in regenerating retinal ganglion cells." European Journal of Neuroscience 11(10): 3488-3498.
Routtenberg, A., I. Cantallops, S. Zaffuto, P. Serrano and U. Namgung (2000). "Enhanced learning after genetic overexpression of a brain growth protein." Proceeding of the National Academy of Sciences of the United States of America 97(13): 7657-7662.
Rupp, B., M. F. Wullimann and H. Reichert (1996). "The zebrafish brain: a neuroanatomical comparison with the goldfish." Anatomy and Embryology 194(2): 187-203.
Shain, D. H., D. T. Haile, T. A. Verrastro and M. X. Zuber (1995). "Cloning and embryonic expression of Xenopus laevis GAP-43 (XGAP-43)." Brain Research 697(1-2): 241-246.
Skene, J. H. and M. Willard (1981). "Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells." The Journal of Cell Biology 89(1): 86-95.
Strittmatter, S. M., C. Fankhauser, P. L. Huang, H. Mashimo and M. C. Fishman (1995). "Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43." Cell 80(3): 445-452.
Sugitani, K., T. Matsukawa, Y. Koriyama, T. Shintani, T. Nakamura, M. Noda and S. Kato (2006). "Upregulation of retinal transglutaminase during the axonal elongation stage of goldfish optic nerve regeneration." Neuroscience 142(4): 1081-1092.
Terman, J. R., X. M. Wang and G. F. Martin (2000). "Repair of the transected spinal cord at different stages of development in the North American opossum, Didelphis virginiana." Brain Research Bulletin 53(6): 845-855.
Yoshikoshi, K. and K. Inoue (1990). "Viral Nervous Necrosis in Hatchery-Reared Larvae and Juveniles of Japanese Parrotfish, Oplegnathus-Fasciatus (Temminck and Schlegel)." Journal of Fish Diseases 13(1): 69-77.
Zupanc, G. K. (2008). "Adult neurogenesis and neuronal regeneration in the brain of teleost fish." Journal of Physiology-Paris 102(4-6): 357-373.