簡易檢索 / 詳目顯示

研究生: 陳瑩蓁
Chen, Ying-Chen
論文名稱: 偏矽酸鋰觸媒催化大豆油及廢食用油轉酯化反應之研究
Study on Catalyzed Transesterification Reaction of Soybean Oil and Waste Cooking Oil over Lithium Metasilicate
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 132
中文關鍵詞: 生質柴油轉酯化反應偏矽酸鋰水熱合成法廢食用油
外文關鍵詞: Biodiesel, Transesterification, Lithium metasilicate, Hydrothermal processes, Waste cooking oil
相關次數: 點閱:128下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技日新月異,人類對於能源的使用量日益上升,其中以化石燃料為主,雖然帶給人類便利的生活,但過度的開發使用,卻也造成能源缺乏、環境破壞與氣候變遷等問題。因此,尋求乾淨、低汙染的再生能能源已成為非常重要且迫切的議題。其中生質能源因其無毒、二氧化碳排放量低、生物可降解,而廣受到大家的重視,被視為未來能取代化石能源的陽光燃料。
    生質柴油為一種替代石化柴油之能源,主要由動、植物油脂或廢油透過轉酯化反應而得,由於轉酯化反應速度較慢,常加入適當之觸媒來加速反應的進行,因此觸媒的選擇,對於轉酯化反應相當重要,其中因異相觸媒在分離以及後續處理上的便利性,並且可回收重複使用,因此在本實驗中採用異相觸媒來進行轉酯化反應。
    本研究使用天然矽藻土並利用水熱合成法來製備偏矽酸鋰觸媒,作為催化大豆油或廢食用油轉酯化反應。探討觸媒對於轉酯化的反應參數,以找出最合適的反應條件,亦探討油料中含有游離脂肪酸對於反應的影響,以及觸媒回收可重複使用的次數,此外,也對反應後所得的產物進行物理化學性質分析,最後並將反應製程放大,以模擬工廠批次反應的生產。
    由實驗結果可得知,偏矽酸鋰觸媒直接使用在轉酯化反應就有極佳的催化效果,在最佳條件下反應1小時即可達到90%以上的產率,且可重複使用至少19次,仍有85%以上的產率,在游離脂肪酸含量為5.24 wt%下,反應4小時後,具有85%以上的產率,而反應後所得的產物,其密度、黏度、酸價與碘價皆在美國物質試驗標準 (ASTM D6751-15cε1)的範圍內,且將反應放大後,使用廢食用油反應8小時,可達到80%的產率,未來將有機會可取代鹼性勻相觸媒,運用在工廠上,催化轉酯化反應。

    In this study, as-synthesized lithium metasilicate (Li2SiO3) catalysts were used to catalyze transesterification of soybean oil and waste cooking oil in excess methanol for biodiesel production. Lithium metasilicate was synthesized via hydrothermal processes by using the diatomite as a starting material with an addition of LiOH(aq) at 150C for one day. The properties of solid catalysts were characterized with XRD, SEM, BET, FTIR and solid-state NMR. Process parameters in transesterification reaction were optimized. Consequently, the yields of transesterification were above 90% in an hour by using Li2SiO3 catalysts under the optimal condition. According to the Arrhenius equation, the activation energy of transesterification using lithium metasilicate was near 61.65 kJ/mol. Furthermore, the spent catalysts could be recycled and reused for at least for 19 cycles without significant deactivation observed in catalysis. With a decreasing loading of catalyst-to-oil to 25wt%, the yield of biodiesel could still reach ca. 85% in four hours at 60C. Moreover, the soybean oil was spiked with oleic acid to obtain an acid value of 10.4 mg KOH/g oil would not affect adversely the transesterification significantly during the first cycle of transesterification reaction. Besides, The yield of the biodiesel from waste cooking oil could achieve above 80% in 4 h by using as-synthesized Li2SiO3 and the density, viscosity, iodine value and acid value of it was found to comply with the ASTM and EN standards.

    目錄 摘要 I Abstract II 致謝 XII 目錄 XIV 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 文獻回顧 5 2-1 生質柴油 5 2-1-1 生質柴油的歷史發展 5 2-1-2 國內生質柴油發展現況 6 2-1-3 生質柴油的原料來源 7 2-1-4 生質柴油與柴油特性比較 9 2-2 生質柴油的生產方式 15 2-2-1 混合稀釋法 15 2-2-2 微乳化 15 2-2-3 熱裂解 16 2-2-4 轉酯化反應 17 2-3 轉酯化反應 20 2-3-1 勻相觸媒 (Homogeneous catalyst) 20 2-3-1-1 勻相鹼性觸媒 (Homogeneous alkaline catalyst) 21 2-3-1-2 勻相酸性觸媒 (Homogeneous acid catalyst) 23 2-3-2 異相觸媒 (Heterogeneous catalyst) 24 2-3-2-1 異相鹼性觸媒 (Heterogeneous base catalyst) 25 2-3-2-2 異相酸性觸媒 (Heterogeneous acid catalyst) 26 2-3-3 酵素觸媒 (Enzymatic catalyst) 27 2-3-4 超臨界流體轉酯化 (Supercritical transesterification) 28 2-4 偏矽酸鋰簡介 30 2-4-1 偏矽酸鋰合成方法 30 2-4-2 偏矽酸鋰應用 33 2-5 陳炳宏老師實驗室固體觸媒應用於轉酯化反應之回顧 35 2-5-1 Y型沸石 35 2-5-2 Beta型沸石 36 2-5-3 全矽Beta型沸石 36 2-5-4 MCM-22型沸石 37 2-5-5 LTA型沸石 37 2-5-6 CAN型沸石 37 2-5-7 ANA型沸石 38 第三章 實驗 41 3-1 研究架構及流程 41 3-2 實驗藥品及實驗設備 42 3-2-1 實驗藥品 42 3-2-2 實驗設備 44 3-3 觸媒製備及生質柴油合成 46 3-3-1 Li2SiO3觸媒的合成 46 3-3-2 轉酯化反應 47 3-3-3 轉酯化反應-耐用性測試 48 3-3-4 Li2SiO3觸媒造粒成型 48 3-3-5 轉酯化製程放大 (scale-up production) 48 3-4 分析方法 50 3-4-1 觸媒鑑定與分析 50 3-4-1-1 X光繞射分析儀 (X-ray Diffraction Analyzer, XRD) 50 3-4-1-2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 51 3-4-1-3 傅立葉紅外線光譜分析儀 (Fourier transform infrared, FT-IR) 52 3-4-1-4 比表面積儀 (Specific Surface Area & Pore Size Distribution Analyzer, BET) 52 3-4-1-5 熱重分析儀 (Thermogravimetric Analyzer, TGA) 54 3-4-1-6 固態核磁共振儀 (Solid-state Nuclear Magnetic Resonance, ssNMR) 55 3-4-1-7 程溫脫附儀 (Temperature Programmed Desorption, TPD) 56 3-4-1-8 觸媒鹼度測試 57 3-4-2 生質柴油產物分析 57 3-4-2-1 氣相層析儀 (Gas Chromatography, GC) 57 3-4-2-2 脂肪酸甲酯檢量線製作 59 3-4-2-3 脂肪酸甲酯產率分析 59 3-4-2-4 油料中含有游離脂肪酸之酸價測試 59 3-4-2-5 油料與生質柴油之密度測試 60 3-4-2-6 油料與生質柴油之動黏度測試 61 3-4-2-7 油料與生質柴油之碘價測試 62 3-4-2-8 感應耦合電漿原子發射光譜儀 (Inductively Coupled Plasma- Optical Emission Spectrometer, ICP-OES) 63 第四章 結果與討論 64 4-1 偏矽酸鋰 (Li2SiO3)觸媒之合成與鑑定 64 4-1-1 偏矽酸鋰 (Li2SiO3)觸媒之晶相分析 64 4-1-2 氫氧化鋰比例對於合成偏矽酸鋰 (Li2SiO3)觸媒之影響 66 4-1-3 矽來源對於合成偏矽酸鋰 (Li2SiO3)觸媒之影響 68 4-1-4 偏矽酸鋰 (Li2SiO3)觸媒之SEM與EDS分析 70 4-1-5 偏矽酸鋰 (Li2SiO3)觸媒之TGA分析 73 4-1-6 偏矽酸鋰 (Li2SiO3)觸媒之BET分析 73 4-1-7 偏矽酸鋰 (Li2SiO3)觸媒之FTIR分析 77 4-1-8 偏矽酸鋰 (Li2SiO3)觸媒之ssNMR分析 78 4-1-9 偏矽酸鋰 (Li2SiO3)觸媒之酸鹼性分析 80 4-1-9-1 偏矽酸鋰 (Li2SiO3)觸媒之NH3-TPD測量 80 4-1-9-2 偏矽酸鋰 (Li2SiO3)觸媒之CO2-TPD測量 81 4-1-9-3 偏矽酸鋰 (Li2SiO3)觸媒之鹼性測試 81 4-2 商用與自行合成偏矽酸鋰轉酯化效果之比較 82 4-2-1 轉酯化效果之比較 82 4-2-2 觸媒成本評估 82 4-3 反應參數探討 84 4-3-1 溫度對轉酯化反應之影響 84 4-3-2 不同觸媒使用量對轉酯化反應之影響 89 4-3-3 不同醇油比對轉酯化反應之影響 90 4-4 觸媒回收再利用測試 91 4-4-1 觸媒耐用性測試 91 4-4-2 反應後偏矽酸鋰觸媒之鑑定 93 4-4-2-1 XRD與SEM之分析 93 4-4-2-2 BET之分析 95 4-4-2-3 29Si ssNMR之分析 97 4-5 油料中含游離脂肪酸對轉酯化反應之影響 98 4-5-1 油料中含油酸對反應之影響 98 4-5-2 油料中含油酸之觸媒耐用性測試 99 4-5-3 失活後偏矽酸鋰觸媒之鑑定 101 4-5-3-1 XRD與SEM之分析 101 4-5-3-2 29Si ssNMR之分析 103 4-5-3-3 鹼性測試 104 4-6 使用廢食用油於轉酯化反應之探討 105 4-6-1 廢食用油與大豆油轉酯化效果之比較 106 4-6-2 廢食用油、大豆油及其產物之物理化學性質分析 107 4-6-2-1 廢食用油、大豆油與生質柴油之比較 107 4-6-2-2 生質柴油與石化柴油之比較 110 4-7 觸媒造粒應用於轉酯化製程放大 112 4-7-1 觸媒造粒後之XRD與SEM分析 112 4-7-2 造粒與粉末觸媒轉酯化效果之比較 114 4-7-3 轉酯化製程放大 116 第五章 結論與未來展望 117 5-1 結論 117 5-2 未來展望 118 參考文獻 119 附錄 131

    Alemi, A., Khademinia, S., Sertkol, M. Part III: lithium metasilicate(Li2SiO3)—mild condition hydrothermal synthesis, characterization and optical properties. International Nano Letters, 5(2), 77-83 (2015)

    Aransiola, E. F., Ojumu, T. V., Oyekola, O. O., Madzimbamuto, T. F., Ikhu-Omoregbe, D. I. O. A review of current technology for biodiesel production: State of the art. Biomass and Bioenergy, 61, 276-297 (2014).

    Arumugam, A., Ponnusami, V. Biodiesel production from Calophyllum inophyllum oil using lipase producing Rhizopus oryzae cells immobilized within reticulated foams. Renewable Energy, 64, 276-282 (2014)

    ASTM D4052-16. Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter. (2016)

    ASTM D445-17a. Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity) (2017)

    ASTM D5559-95. Standard Test Method for Determination of Acidity as Free Fatty Acids/Acid Number in the Absence of Ammonium or Triethanolamine Soaps in Sulfonated and Sulfated Oils. (2017)

    ASTM D6584-13. Standard Test Method for Determination of Total Monoglycerides, Total Diglycerides, Total Triglycerides, and Free and Total Glycerin in B-100 Biodiesel Methyl Esters by Gas Chromatography. (2014)

    ASTM D6751-15cε1. Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. (2015)

    ASTM D975-17. Standard Specification for Diesel Fuel Oils. (2017)

    Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16(4), 2070-2093 (2012)

    Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., Sulaiman, N. M. N. The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14-26 (2013).

    Avhad, M. R., Marchetti, J. M. Innovation in solid heterogeneous catalysis for the generation of economically viable and ecofriendly biodiesel: A review. Catalysis Reviews, 58(2), 157-208 (2016)

    Birla, A., Singh, B., Upadhyay, S. N., Sharma, Y. C. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour Technol, 106, 95-100 (2012)

    Chen, KT., Wang, JX., Dai, YM., Wang, PH., Liou, CY., Nien, CW., Wu, JS., Chen, CC. Rice husk ash as a catalyst precursor for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 44(4), 622-629 (2013)

    Clayden, N.J., Esposito, S., Jayasooriya, U.A., Sprunt, J., Pernice, P. Solid state 29Si NMR and FT Raman spectroscopy of the devitrification of lithium metasilicate glass. Journal of Non-Crystalline Solids, 224, 50–56 (1998)

    CNS 15060. Biodiesel – Fatty acid methyl esters (FAME) – Determination of iodine value (2007)

    Column, N. J., Hurt, A. P., Raza, a. Hydrothermal synthesis of lithium silicate from waste glass. a preliminary study. Physicochem. Probl. Miner. Process, 51(2), 685−694 (2015)

    Corma, A., Iborra, S. Optimization of Alkaline Earth Metal Oxide and Hydroxide Catalysts for Base-Catalyzed Reactions. Advances in Catalysis 49, 239-302 (2006)

    Cruz, D., Bulbulian, S. Synthesis of lithium silicate tritium breeder powders by a modified combustion method. Journal of nuclear materials, 312, 262-265 (2003)

    Cruz, D., Bulbulian, S. Synthesis of Li4SiO4 by a Modified Combustion Method. Journal of the American Ceramic Society, 88(7), 1720-1724 (2005)

    Cruz, D., Bulbulian, S., Lima, E., Pfeiffer, H. Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3). Journal of Solid State Chemistry, 179(3): 909-916 (2006)

    Dai, Y.-M., Chen, K.-T., Wang, Y.-J., Chen, C.-C. Application of Peanut Husk Ash as a Low-Cost Solid Catalyst for Biodiesel Production. International Journal of Chemical Engineering and Applications, 5(3), 276-280 (2014)

    Encinar, J. M., González, J. F., Rodríguez-Reinares, A. Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel Processing Technology, 88(5), 513-522 (2007)

    Guo, M., Song, W., Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 42, 712-725 (2015)

    Hajjari, M., Tabatabaei, M., Aghbashlo, M., Ghanavati, H. A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews, 72, 445-464 (2017)

    Helwani, Z., Othman, M. R., Aziz, N., Kim, J., Fernando, W. J. N. Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Applied Catalysis A: General, 363(1-2), 1-10 (2009)

    Hindryawati, N., Maniam, G. P., Karim, M. R., Chong, K. F. Transesterification of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as potential solid base catalyst. Engineering Science and Technology, an International Journal, 17(2), 95-103 (2014)

    Ishida, H., Tadanaga, K., Hayashi, A., Tatsumisago, M. Synthesis of monodispersed lithium silicate particles using the sol–gel method. Journal of Sol-Gel Science and Technology, 65(1), 41-45 (2012)

    Jiang, W., Niu, X., Yuan, F., Zhu, Y., Fu, H. Preparation of KF–La2O2CO3 solid base catalysts and their excellent catalytic activities for transesterification of tributyrin with methanol. Catalysis Science & Technology, 4(9), 2957 (2014)

    Kouzu, M., Yamanaka, S.-y., Hidaka, J.-s., Tsunomori, M. Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. Applied Catalysis A: General, 355(1-2), 94-99 (2009)

    Leofanti, G., Padovan, M., Tozzola, G., Venturelli, B. Surface area and pore texture of catalysts. Catalysis Today, 41(1–3), 207-219 (1998)

    Leung, D. Y. C., Wu, X., Leung, M. K. H. A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083-1095 (2010)

    Li, Xiaoyu.,Yang, Huaming. Morphology-controllable Li2SiO3 nanostructures. CrystEngComm, 16(21), 4501 (2014)

    Lim, S., Teong, L. K. Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Renewable and Sustainable Energy Reviews, 14(3), 938-954 (2010)

    Lima, S. P. B. d., Vasconcelos, R. P. d., Paiva, O. A., Cordeiro, G. C., Chaves, M. R. d. M., Toledo Filho, R. D., Fairbairn, E. d. M. R. Production of silica gel from residual rice husk ash. Química Nova, 34, 1, 71-75 (2011)

    Lotero, E., Liu, Y.J., Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G. Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research, 44, 5353-5363 (2005)

    Lourinho, G., Brito, P. Advanced biodiesel production technologies: novel developments. Reviews in Environmental Science and Bio/Technology, 14(2), 287-316 (2014)

    Ma, F., Hanna, M. A. Biodiesel production: a review1. Bioresour Technol, 70(1), 1-15 (1999)

    Mandolesi de Araujuo, C.D., Cristina de Andrade, C., Souza e Silva, E.D., Antonio Dupas, F. Biodiesel production from used cooking oil: A review. Renewable and Sustain Energy Reviews, 27, 445-452 (2013)

    Mardhiah, H. H., Ong, H. C., Masjuki, H. H., Lim, S., Lee, H. V. A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and Sustainable Energy Reviews, 67, 1225-1236 (2017)
    Nagarajan, S., Chou, S. K., Cao, S., Wu, C., Zhou, Z. An updated comprehensive techno-economic analysis of algae biodiesel. Bioresour Technol, 145, 150-156 (2013)

    Nishikawa, Y., Oyaidzu, M., Yoshikawa, A., Munakata, K., Okada, M., Nishikawa, M., Okuno, K. Correlation between tritium release and thermal annealing of irradiation damage in neutron-irradiated Li2SiO3. Journal of Nuclear Materials, 367-370, 1371-1376 (2007)

    O’Donnell, S., Demshemino, I., Yahaya, M., Nwadike, I., Okoro, L. A review on the Spectroscopic Analyses of Biodiesel. European International Journal of Science and Technology, 2 (7), 137-146 (2013)

    Ortiz-Landeros, J., Contreras-García, M. E., Gómez-Yáñez, C., Pfeiffer, H. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: (I) Synthesis, structural and microstructural characterization. Journal of Solid State Chemistry, 184(5), 1304-1311 (2011)

    Ortiz-Landeros, J., Gómez-Yáñez, C., Pfeiffer, H. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: II—Textural analysis and CO2–H2O sorption evaluation. Journal of Solid State Chemistry, 184(8), 2257-2262 (2011)

    Ortiz-Landeros, J., López-Juárez, R., Romero-Ibarra, I. C., Pfeiffer, H., Balmori-Ramírez, H., Gómez-Yáñez, C. Li2SiO3 fast microwave-assisted hydrothermal synthesis and evaluation of its water vapor and CO2 absorption

    Pfeifer, H., Meiler, W., Deininger, D. NMR of organic compounds adsorbed on porous solids. Annual Reports on NMR Spectroscopy 15, 291-356 (1984)

    Pramanik, K. Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renewable Energy. 28, 239-248 (2003)

    Rahul, R., Satyarthi, J. K., Srinivas, D. Lanthanum and zinc incorporated hydrotalcites as solid base catalysts for biodiesel and biolubricants production. Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 50(8), 1017-1025 (2011)

    Rathor, D., Nizami, A.-S., Singh, A., Pant, D. Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives. Biofuel Research Journal, 3(2), 380-393 (2016)

    Ruhul, A. M., Kalam, M. A., Masjuki, H. H., Fattah, I. M. R., Reham, S. S., Rashed, M. M. State of the art of biodiesel production processes: a review of the heterogeneous catalyst. RSC Advances, 5(122), 101023-101044 (2015)

    Sajjadi, B., Raman, A. A. A., Arandiyan, H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renewable and Sustainable Energy Reviews, 63, 62-92 (2016)

    Saluja, R. K., Kumar, V., Sham, R. Stability of biodiesel – A review. Renewable and Sustainable Energy Reviews, 62, 866-881 (2016)
    Serra, J., González, P., Liste, S., Serra, C., Chiussi, S., León, B., Pérez–Amor, M., Ylänen, HO., Hupa, M. FTIR and XPS studies of bioactive silica based glasses. Journal of Non-Crystalline Solids, 332(1-3), 20-27 (2003)

    Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T. Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984) Pure and Applied Chemistry, 57 603-619 (1985)

    Smith, R. M. Chemical process: design and integration, John Wiley & Sons, New Jersey, 186-200 (2005)

    Talebian-Kiakalaieh, A., Amin, N. A. S., Mazaheri, H. A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683-710 (2013)

    Tan, H. W., Abdul Aziz, A. R., Aroua, M. K. Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 27, 118-127 (2013)

    Tang, T., Zhang, Z., Meng, J.-B., Luo, D.-L. Synthesis and characterization of lithium silicate powders. Fusion Engineering and Design, 84(12), 2124-2130 (2009)

    TechMax Technical Co., Ltd., Nov. (2003), http://www.techmaxasia.com/articles/detail/47
    Tanabe, K., Yamaguchi, T. Basicity and acidity of solid surfaces. Journal of the Research Institute for Catalysis, 11(3), 179-184 (1964)
    Uchino, T., Aboshi, A., Kohara, S., Ohishi, Y., Sakashita, M., Aoki, K. Microscopic structure of nanometer-sized silica particles. Physical Review B, 69(15), 155409 (2004)

    Uzun, B. B., Kılıç, M., Özbay, N., Pütün, A. E., Pütün, E. Biodiesel production from waste frying oils: Optimization of reaction parameters and determination of fuel properties. Energy, 44(1), 347-351 (2012)

    Vassileva, P., Apostolova, M., Detcheva, A., Ivanova, E. Bulgarian natural diatomites: modification and characterization. Chemical Papers, 67(3), 342-349 (2013)

    Verma, P., Sharma, M. P. Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063-1071 (2016)

    Viriya-Empikul, N., Krasae, P., Puttasawat, B., Yoosuk, B., Chollacoop, N., Faungnawakij, K. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour Technol, 101(10), 3765-3767 (2010)

    Wu, W., Zhu, M., Zhang, D. An experimental and kinetic study of canola oil transesterification catalyzed by mesoporous alumina supported potassium. Applied Catalysis A: General, 530, 166-173 (2017)

    Yang, A., Wang, H., Li, W., Shi, J., Borrell, A. Synthesis of Lithium Metasilicate Powders at Low Temperature via Mechanical Milling. Journal of the American Ceramic Society, 95(6), 1818-1821 (2012)

    Zhang, B., Nieuwoudt, M., Easteal, A. J. Sol–Gel Route to Nanocrystalline Lithium Metasilicate Particles. Journal of the American Ceramic Society, 91(6), 1927-1932 (2008)

    Zhang, L., Sheng, B., Xin, Z., Liu, Q., Sun, S. Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresour Technol, 101(21), 8144-8150 (2010)

    Zhang, W.-B. Review on analysis of biodiesel with infrared spectroscopy. Renewable and Sustainable Energy Reviews, 16(8), 6048-6058 (2012)

    Zhang, Y., Wong, W. T., Yung, K. F. One-step production of biodiesel from rice bran oil catalyzed by chlorosulfonic acid modified zirconia via simultaneous esterification and transesterification. Bioresour Technol, 147, 59-64. (2013).

    王祥合. Synthesis of Zeolite MCM-22 for Catalyzed Transesterification of Triglycerides for Biodiesel. (2014)

    宋勇徵. 生質柴油國外發展演進. 台肥季刊, (2006)

    李育庭. Study on Mechanism of Transesterification Reaction of Soybean oil by Using Lithium-loaded All-Silica Zeolite BEA. (2016)

    李堅明. WEO2016提醒:注意電力供應安全與水資源整合 能源報導 (2017)
    周季霖. Study on Catalyzed Transesterification of Soybean Oil with Cancrinite-type Zeolite. (2015)

    周昕妤. Transesterification of Triglycerides for Biodiesel Production using Na+ loaded Zeolite Y Catalysts. (2012)

    粘志遠. Transesterification for biodiesel production using alkali-loaded Zeolite Y. (2013)

    莊地龍. Study on Catalyzed Transesterification of Triglycerides with Ion-Exchanged Zeolite Beta. (2014)

    郭致廷. 台灣生質柴油出了什麼問題? 生質能源趨勢 (2014)

    陳文姿. 廢食用油變潔淨能源 環署推100%生質柴油 環境資訊中心 (2015)

    陳祺凡. Study on Catalyzed Transesterification of Soybean Oil with Anaclime-type Zeolite. (2015)

    馮馨潔. Beta型沸石觸媒於三酸甘油酯轉酯化反應以製備生質柴油之研究 (2013)

    鄧進協. Study on biodiesel production by using Amberlite IR-120, zeolite LTA and zeolite CAN catalysts. (2013)

    蘇美惠. 從生質柴油推動政策探討我國生質能源產業發展瓶頸 能源資訊平台 (2016)

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE