| 研究生: |
陳瑩蓁 Chen, Ying-Chen |
|---|---|
| 論文名稱: |
偏矽酸鋰觸媒催化大豆油及廢食用油轉酯化反應之研究 Study on Catalyzed Transesterification Reaction of Soybean Oil and Waste Cooking Oil over Lithium Metasilicate |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 生質柴油 、轉酯化反應 、偏矽酸鋰 、水熱合成法 、廢食用油 |
| 外文關鍵詞: | Biodiesel, Transesterification, Lithium metasilicate, Hydrothermal processes, Waste cooking oil |
| 相關次數: | 點閱:128 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技日新月異,人類對於能源的使用量日益上升,其中以化石燃料為主,雖然帶給人類便利的生活,但過度的開發使用,卻也造成能源缺乏、環境破壞與氣候變遷等問題。因此,尋求乾淨、低汙染的再生能能源已成為非常重要且迫切的議題。其中生質能源因其無毒、二氧化碳排放量低、生物可降解,而廣受到大家的重視,被視為未來能取代化石能源的陽光燃料。
生質柴油為一種替代石化柴油之能源,主要由動、植物油脂或廢油透過轉酯化反應而得,由於轉酯化反應速度較慢,常加入適當之觸媒來加速反應的進行,因此觸媒的選擇,對於轉酯化反應相當重要,其中因異相觸媒在分離以及後續處理上的便利性,並且可回收重複使用,因此在本實驗中採用異相觸媒來進行轉酯化反應。
本研究使用天然矽藻土並利用水熱合成法來製備偏矽酸鋰觸媒,作為催化大豆油或廢食用油轉酯化反應。探討觸媒對於轉酯化的反應參數,以找出最合適的反應條件,亦探討油料中含有游離脂肪酸對於反應的影響,以及觸媒回收可重複使用的次數,此外,也對反應後所得的產物進行物理化學性質分析,最後並將反應製程放大,以模擬工廠批次反應的生產。
由實驗結果可得知,偏矽酸鋰觸媒直接使用在轉酯化反應就有極佳的催化效果,在最佳條件下反應1小時即可達到90%以上的產率,且可重複使用至少19次,仍有85%以上的產率,在游離脂肪酸含量為5.24 wt%下,反應4小時後,具有85%以上的產率,而反應後所得的產物,其密度、黏度、酸價與碘價皆在美國物質試驗標準 (ASTM D6751-15cε1)的範圍內,且將反應放大後,使用廢食用油反應8小時,可達到80%的產率,未來將有機會可取代鹼性勻相觸媒,運用在工廠上,催化轉酯化反應。
In this study, as-synthesized lithium metasilicate (Li2SiO3) catalysts were used to catalyze transesterification of soybean oil and waste cooking oil in excess methanol for biodiesel production. Lithium metasilicate was synthesized via hydrothermal processes by using the diatomite as a starting material with an addition of LiOH(aq) at 150C for one day. The properties of solid catalysts were characterized with XRD, SEM, BET, FTIR and solid-state NMR. Process parameters in transesterification reaction were optimized. Consequently, the yields of transesterification were above 90% in an hour by using Li2SiO3 catalysts under the optimal condition. According to the Arrhenius equation, the activation energy of transesterification using lithium metasilicate was near 61.65 kJ/mol. Furthermore, the spent catalysts could be recycled and reused for at least for 19 cycles without significant deactivation observed in catalysis. With a decreasing loading of catalyst-to-oil to 25wt%, the yield of biodiesel could still reach ca. 85% in four hours at 60C. Moreover, the soybean oil was spiked with oleic acid to obtain an acid value of 10.4 mg KOH/g oil would not affect adversely the transesterification significantly during the first cycle of transesterification reaction. Besides, The yield of the biodiesel from waste cooking oil could achieve above 80% in 4 h by using as-synthesized Li2SiO3 and the density, viscosity, iodine value and acid value of it was found to comply with the ASTM and EN standards.
Alemi, A., Khademinia, S., Sertkol, M. Part III: lithium metasilicate(Li2SiO3)—mild condition hydrothermal synthesis, characterization and optical properties. International Nano Letters, 5(2), 77-83 (2015)
Aransiola, E. F., Ojumu, T. V., Oyekola, O. O., Madzimbamuto, T. F., Ikhu-Omoregbe, D. I. O. A review of current technology for biodiesel production: State of the art. Biomass and Bioenergy, 61, 276-297 (2014).
Arumugam, A., Ponnusami, V. Biodiesel production from Calophyllum inophyllum oil using lipase producing Rhizopus oryzae cells immobilized within reticulated foams. Renewable Energy, 64, 276-282 (2014)
ASTM D4052-16. Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter. (2016)
ASTM D445-17a. Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity) (2017)
ASTM D5559-95. Standard Test Method for Determination of Acidity as Free Fatty Acids/Acid Number in the Absence of Ammonium or Triethanolamine Soaps in Sulfonated and Sulfated Oils. (2017)
ASTM D6584-13. Standard Test Method for Determination of Total Monoglycerides, Total Diglycerides, Total Triglycerides, and Free and Total Glycerin in B-100 Biodiesel Methyl Esters by Gas Chromatography. (2014)
ASTM D6751-15cε1. Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. (2015)
ASTM D975-17. Standard Specification for Diesel Fuel Oils. (2017)
Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16(4), 2070-2093 (2012)
Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., Sulaiman, N. M. N. The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14-26 (2013).
Avhad, M. R., Marchetti, J. M. Innovation in solid heterogeneous catalysis for the generation of economically viable and ecofriendly biodiesel: A review. Catalysis Reviews, 58(2), 157-208 (2016)
Birla, A., Singh, B., Upadhyay, S. N., Sharma, Y. C. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour Technol, 106, 95-100 (2012)
Chen, KT., Wang, JX., Dai, YM., Wang, PH., Liou, CY., Nien, CW., Wu, JS., Chen, CC. Rice husk ash as a catalyst precursor for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 44(4), 622-629 (2013)
Clayden, N.J., Esposito, S., Jayasooriya, U.A., Sprunt, J., Pernice, P. Solid state 29Si NMR and FT Raman spectroscopy of the devitrification of lithium metasilicate glass. Journal of Non-Crystalline Solids, 224, 50–56 (1998)
CNS 15060. Biodiesel – Fatty acid methyl esters (FAME) – Determination of iodine value (2007)
Column, N. J., Hurt, A. P., Raza, a. Hydrothermal synthesis of lithium silicate from waste glass. a preliminary study. Physicochem. Probl. Miner. Process, 51(2), 685−694 (2015)
Corma, A., Iborra, S. Optimization of Alkaline Earth Metal Oxide and Hydroxide Catalysts for Base-Catalyzed Reactions. Advances in Catalysis 49, 239-302 (2006)
Cruz, D., Bulbulian, S. Synthesis of lithium silicate tritium breeder powders by a modified combustion method. Journal of nuclear materials, 312, 262-265 (2003)
Cruz, D., Bulbulian, S. Synthesis of Li4SiO4 by a Modified Combustion Method. Journal of the American Ceramic Society, 88(7), 1720-1724 (2005)
Cruz, D., Bulbulian, S., Lima, E., Pfeiffer, H. Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3). Journal of Solid State Chemistry, 179(3): 909-916 (2006)
Dai, Y.-M., Chen, K.-T., Wang, Y.-J., Chen, C.-C. Application of Peanut Husk Ash as a Low-Cost Solid Catalyst for Biodiesel Production. International Journal of Chemical Engineering and Applications, 5(3), 276-280 (2014)
Encinar, J. M., González, J. F., Rodríguez-Reinares, A. Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel Processing Technology, 88(5), 513-522 (2007)
Guo, M., Song, W., Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 42, 712-725 (2015)
Hajjari, M., Tabatabaei, M., Aghbashlo, M., Ghanavati, H. A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews, 72, 445-464 (2017)
Helwani, Z., Othman, M. R., Aziz, N., Kim, J., Fernando, W. J. N. Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Applied Catalysis A: General, 363(1-2), 1-10 (2009)
Hindryawati, N., Maniam, G. P., Karim, M. R., Chong, K. F. Transesterification of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as potential solid base catalyst. Engineering Science and Technology, an International Journal, 17(2), 95-103 (2014)
Ishida, H., Tadanaga, K., Hayashi, A., Tatsumisago, M. Synthesis of monodispersed lithium silicate particles using the sol–gel method. Journal of Sol-Gel Science and Technology, 65(1), 41-45 (2012)
Jiang, W., Niu, X., Yuan, F., Zhu, Y., Fu, H. Preparation of KF–La2O2CO3 solid base catalysts and their excellent catalytic activities for transesterification of tributyrin with methanol. Catalysis Science & Technology, 4(9), 2957 (2014)
Kouzu, M., Yamanaka, S.-y., Hidaka, J.-s., Tsunomori, M. Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. Applied Catalysis A: General, 355(1-2), 94-99 (2009)
Leofanti, G., Padovan, M., Tozzola, G., Venturelli, B. Surface area and pore texture of catalysts. Catalysis Today, 41(1–3), 207-219 (1998)
Leung, D. Y. C., Wu, X., Leung, M. K. H. A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083-1095 (2010)
Li, Xiaoyu.,Yang, Huaming. Morphology-controllable Li2SiO3 nanostructures. CrystEngComm, 16(21), 4501 (2014)
Lim, S., Teong, L. K. Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Renewable and Sustainable Energy Reviews, 14(3), 938-954 (2010)
Lima, S. P. B. d., Vasconcelos, R. P. d., Paiva, O. A., Cordeiro, G. C., Chaves, M. R. d. M., Toledo Filho, R. D., Fairbairn, E. d. M. R. Production of silica gel from residual rice husk ash. Química Nova, 34, 1, 71-75 (2011)
Lotero, E., Liu, Y.J., Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G. Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research, 44, 5353-5363 (2005)
Lourinho, G., Brito, P. Advanced biodiesel production technologies: novel developments. Reviews in Environmental Science and Bio/Technology, 14(2), 287-316 (2014)
Ma, F., Hanna, M. A. Biodiesel production: a review1. Bioresour Technol, 70(1), 1-15 (1999)
Mandolesi de Araujuo, C.D., Cristina de Andrade, C., Souza e Silva, E.D., Antonio Dupas, F. Biodiesel production from used cooking oil: A review. Renewable and Sustain Energy Reviews, 27, 445-452 (2013)
Mardhiah, H. H., Ong, H. C., Masjuki, H. H., Lim, S., Lee, H. V. A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and Sustainable Energy Reviews, 67, 1225-1236 (2017)
Nagarajan, S., Chou, S. K., Cao, S., Wu, C., Zhou, Z. An updated comprehensive techno-economic analysis of algae biodiesel. Bioresour Technol, 145, 150-156 (2013)
Nishikawa, Y., Oyaidzu, M., Yoshikawa, A., Munakata, K., Okada, M., Nishikawa, M., Okuno, K. Correlation between tritium release and thermal annealing of irradiation damage in neutron-irradiated Li2SiO3. Journal of Nuclear Materials, 367-370, 1371-1376 (2007)
O’Donnell, S., Demshemino, I., Yahaya, M., Nwadike, I., Okoro, L. A review on the Spectroscopic Analyses of Biodiesel. European International Journal of Science and Technology, 2 (7), 137-146 (2013)
Ortiz-Landeros, J., Contreras-García, M. E., Gómez-Yáñez, C., Pfeiffer, H. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: (I) Synthesis, structural and microstructural characterization. Journal of Solid State Chemistry, 184(5), 1304-1311 (2011)
Ortiz-Landeros, J., Gómez-Yáñez, C., Pfeiffer, H. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: II—Textural analysis and CO2–H2O sorption evaluation. Journal of Solid State Chemistry, 184(8), 2257-2262 (2011)
Ortiz-Landeros, J., López-Juárez, R., Romero-Ibarra, I. C., Pfeiffer, H., Balmori-Ramírez, H., Gómez-Yáñez, C. Li2SiO3 fast microwave-assisted hydrothermal synthesis and evaluation of its water vapor and CO2 absorption
Pfeifer, H., Meiler, W., Deininger, D. NMR of organic compounds adsorbed on porous solids. Annual Reports on NMR Spectroscopy 15, 291-356 (1984)
Pramanik, K. Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renewable Energy. 28, 239-248 (2003)
Rahul, R., Satyarthi, J. K., Srinivas, D. Lanthanum and zinc incorporated hydrotalcites as solid base catalysts for biodiesel and biolubricants production. Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 50(8), 1017-1025 (2011)
Rathor, D., Nizami, A.-S., Singh, A., Pant, D. Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives. Biofuel Research Journal, 3(2), 380-393 (2016)
Ruhul, A. M., Kalam, M. A., Masjuki, H. H., Fattah, I. M. R., Reham, S. S., Rashed, M. M. State of the art of biodiesel production processes: a review of the heterogeneous catalyst. RSC Advances, 5(122), 101023-101044 (2015)
Sajjadi, B., Raman, A. A. A., Arandiyan, H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renewable and Sustainable Energy Reviews, 63, 62-92 (2016)
Saluja, R. K., Kumar, V., Sham, R. Stability of biodiesel – A review. Renewable and Sustainable Energy Reviews, 62, 866-881 (2016)
Serra, J., González, P., Liste, S., Serra, C., Chiussi, S., León, B., Pérez–Amor, M., Ylänen, HO., Hupa, M. FTIR and XPS studies of bioactive silica based glasses. Journal of Non-Crystalline Solids, 332(1-3), 20-27 (2003)
Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T. Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984) Pure and Applied Chemistry, 57 603-619 (1985)
Smith, R. M. Chemical process: design and integration, John Wiley & Sons, New Jersey, 186-200 (2005)
Talebian-Kiakalaieh, A., Amin, N. A. S., Mazaheri, H. A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683-710 (2013)
Tan, H. W., Abdul Aziz, A. R., Aroua, M. K. Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 27, 118-127 (2013)
Tang, T., Zhang, Z., Meng, J.-B., Luo, D.-L. Synthesis and characterization of lithium silicate powders. Fusion Engineering and Design, 84(12), 2124-2130 (2009)
TechMax Technical Co., Ltd., Nov. (2003), http://www.techmaxasia.com/articles/detail/47
Tanabe, K., Yamaguchi, T. Basicity and acidity of solid surfaces. Journal of the Research Institute for Catalysis, 11(3), 179-184 (1964)
Uchino, T., Aboshi, A., Kohara, S., Ohishi, Y., Sakashita, M., Aoki, K. Microscopic structure of nanometer-sized silica particles. Physical Review B, 69(15), 155409 (2004)
Uzun, B. B., Kılıç, M., Özbay, N., Pütün, A. E., Pütün, E. Biodiesel production from waste frying oils: Optimization of reaction parameters and determination of fuel properties. Energy, 44(1), 347-351 (2012)
Vassileva, P., Apostolova, M., Detcheva, A., Ivanova, E. Bulgarian natural diatomites: modification and characterization. Chemical Papers, 67(3), 342-349 (2013)
Verma, P., Sharma, M. P. Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063-1071 (2016)
Viriya-Empikul, N., Krasae, P., Puttasawat, B., Yoosuk, B., Chollacoop, N., Faungnawakij, K. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour Technol, 101(10), 3765-3767 (2010)
Wu, W., Zhu, M., Zhang, D. An experimental and kinetic study of canola oil transesterification catalyzed by mesoporous alumina supported potassium. Applied Catalysis A: General, 530, 166-173 (2017)
Yang, A., Wang, H., Li, W., Shi, J., Borrell, A. Synthesis of Lithium Metasilicate Powders at Low Temperature via Mechanical Milling. Journal of the American Ceramic Society, 95(6), 1818-1821 (2012)
Zhang, B., Nieuwoudt, M., Easteal, A. J. Sol–Gel Route to Nanocrystalline Lithium Metasilicate Particles. Journal of the American Ceramic Society, 91(6), 1927-1932 (2008)
Zhang, L., Sheng, B., Xin, Z., Liu, Q., Sun, S. Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresour Technol, 101(21), 8144-8150 (2010)
Zhang, W.-B. Review on analysis of biodiesel with infrared spectroscopy. Renewable and Sustainable Energy Reviews, 16(8), 6048-6058 (2012)
Zhang, Y., Wong, W. T., Yung, K. F. One-step production of biodiesel from rice bran oil catalyzed by chlorosulfonic acid modified zirconia via simultaneous esterification and transesterification. Bioresour Technol, 147, 59-64. (2013).
王祥合. Synthesis of Zeolite MCM-22 for Catalyzed Transesterification of Triglycerides for Biodiesel. (2014)
宋勇徵. 生質柴油國外發展演進. 台肥季刊, (2006)
李育庭. Study on Mechanism of Transesterification Reaction of Soybean oil by Using Lithium-loaded All-Silica Zeolite BEA. (2016)
李堅明. WEO2016提醒:注意電力供應安全與水資源整合 能源報導 (2017)
周季霖. Study on Catalyzed Transesterification of Soybean Oil with Cancrinite-type Zeolite. (2015)
周昕妤. Transesterification of Triglycerides for Biodiesel Production using Na+ loaded Zeolite Y Catalysts. (2012)
粘志遠. Transesterification for biodiesel production using alkali-loaded Zeolite Y. (2013)
莊地龍. Study on Catalyzed Transesterification of Triglycerides with Ion-Exchanged Zeolite Beta. (2014)
郭致廷. 台灣生質柴油出了什麼問題? 生質能源趨勢 (2014)
陳文姿. 廢食用油變潔淨能源 環署推100%生質柴油 環境資訊中心 (2015)
陳祺凡. Study on Catalyzed Transesterification of Soybean Oil with Anaclime-type Zeolite. (2015)
馮馨潔. Beta型沸石觸媒於三酸甘油酯轉酯化反應以製備生質柴油之研究 (2013)
鄧進協. Study on biodiesel production by using Amberlite IR-120, zeolite LTA and zeolite CAN catalysts. (2013)
蘇美惠. 從生質柴油推動政策探討我國生質能源產業發展瓶頸 能源資訊平台 (2016)