研究生: |
葉守恆 Yeh, Shou-Heng |
---|---|
論文名稱: |
結合自適應增強演算法及時空特徵於阿茲海默氏症之平衡能力分析 Combining Adaboost algorithm and spatiotemporal patterns for balance ability analysis of patients with Alzheimer's disease |
指導教授: |
詹寶珠
Chung, Pau-Choo |
共同指導教授: |
白明奇
Pai, Ming-Chyi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 平衡分析 、阿茲海默氏症 、慣性感測器 、身體質量中心 、自適應增強分類演算法 |
外文關鍵詞: | balance ability analysis, Alzheimer’s disease, inertial sensor, center of mass, Adaboost algorithm |
相關次數: | 點閱:153 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在於使用慣性感測器中之運動訊號將其轉換成身體質量中心晃動程度分級之時空間特徵於平衡能力做評估,並將自適應增強分類演算法應用於阿茲海默氏症之分類。首先,本論文設計了動、靜態平衡實驗來評估受測者之平衡能力。本論文請會請受測者穿戴上慣性感測器裝置於腰部以及腳尖上,用以偵測平衡實驗時所收到之運動訊號。並將取得之訊號做前處理及校正後使用來做分析及評估。再接著將腰部慣性感測器之訊號轉換成身體質量中心之軌跡,並將其軌跡透過身體質量中心搖晃分級之方式來分析受測者之搖晃之資訊,再接著將腳部慣性感測器所取得之運動訊號取得其特徵,將腳部以及腰部慣性感測器訊號之特徵應用於自適應增強分類演算法做分類。最後,我們期許此論文中提出的身體質量中心晃動程度分級可以幫助醫生在平衡分析上多一些評估的依據,也希望此分類演算法可以協助醫生在診斷上更便利。
The purpose of the thesis is use the sport signal of inertial sensors to calculated the spatiotemporal patterns of the body center of mass sway level for determine subjects’ balance ability. Then, use the adaboost algorithm for Alzheimer’s disease subjects to classification. First, the thesis designed a series of dynamic and static balance procedures to determine subjects’ balance ability. The thesis will asked the subjects wore the inertial sensors on waist and toe to obtain the sport signal in the balance procedures. And then, we will use the signal preprocessing and calibration to the inertial sensor signal for analysis and estimation. Next, the signal of the waist inertial sensor will be calculated to the trajectory of the body center of mass, then use the trajectory and body center of mass sway level to analyzed subjects’ information of sway level. And next, the sport signal of the foot inertial sensor will be calculated the sport features. We applied the adaboost algorithm with the foot inertial sensor signal features and the waist inertial sensor signal features for classification. Finally, we hoped the body center of mass sway level in the thesis could help the medical personnel to got more information to evaluated the balance ability for Alzheimer’s disease.
[1]C. P. Ferri, M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, K. Hall, K. Hasegawa, H. Hendrie, Y. Huang, A. Jorm, C. Mathers, P. R. Menezes, E. Rimmer, and M. Scazufca, “Global prevalence of dementia: A delphi consensus study,” The Lancet, vol. 366, no. 9503, pp. 2112-2117, 2005.
[2]A. Serna, H. Pigot, and V. Rialle, “A computational model of activities performance decrease in Alzheimer’s disease,” International Journal of Medical Informatics, vol. 76, no. S3, pp. 377-383, 2007.
[3]劉秀枝、潘子明,2008,《防老年痴呆》,台中:社團法人中華民國失智者照顧協會http://www.cdca.org.tw/main.htm?pid=11&ID=67.
[4]N. B.Alexander, J. M. Mollo, B. Giordani, J. A. Ashton-Miller, A. B. Schultz, J. A. Grunawalt, and N. L. Foster, “Maintenance of balance, gait patterns, and obstacle clearance in Alzheimer's disease,” The Official Journal of the American Academy of Neurology, vol. 45, no. 5, pp. 908-914, 1995.
[5]G. G. Tangen, K. Engedal, A. Bergland, T. A. Moger, and A.M. Mengshoel, “Relationships between balance and cognition in patients with subjective cognitive impairment, mild cognitive impairment, and Alzheimer disease,” Physical Therapy Journal of the American Physical Therapy Association, vol. 94, no. 8, pp. 1123-1134, 2014.
[6] E. B. Larson, “Poor balance may be clue to future Alzheimer’s,” Dental Abstracts, vol. 52, no. 2, pp. 78, 2007.
[7]K. Berg, S. Wood-Dauphinėe, J. I. Williams, and D. Gayton, “Measuring balance in the elderly: Preliminary development of an instrument,” Physiotherapy Canada, vol. 41, no. 6, pp. 304-311, 1989.
[8] D. Podsiadlo and S. Richardson, “The timed ‘Up & Go’: A test of basic functional mobility for frail elderly persons,” Journal of the American Geriatrics Society, vol. 39, no. 2, pp. 142-148, 1991.
[9] M.Tinetti, T. Williams, and R. Mayewski, “Fall risk index for elderly patients based on number of chronic disabilities,” The American Journal of Medicine, vol. 80, no. 3, pp. 429-434, 1986.
[10]N. B. Alexander, J. M. Mollo, B. Giordani, J. A. Ashton-Miller, A. B. Schultz, J. A. Grunawalt, and N. L. Foster, “Maintenance of balance, gait patterns, and obstacle clearance in Alzheimer’s disease,” Neurology, vol. 45, no. 5, pp. 908-914, 1995.
[11]T. Nakamura, K. Meguro, H. Yamazaki, H. Okuzumi, A. Tanaka, A. Horikawa, K. Yamaguchi, N. Katsuyama, M. Nakano, H. Arai, and H. Sasaki, “ Postural and gait disturbance correlated with decreased frontal cerebral blood flow in Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 11, no. 3, pp. 132-139, 1997.
[12]N. Ravi, D. Nikhil, P. Mysore, and M. L. Littman, “Activity recognition from accelerometer data,” in Proc. IAAI, 2005, pp. 1541-1546.
[13]B. Milner, “Handwriting recognition using acceleration-based motion detection,” Document Image Processing and Multimedia, vol. 41, no. 5, pp. 1-6, 1999.
[14]M. Sullivan, C. Blake, C. Cunningham, G. Boyle, and C. Finucane, “Correlation of accelerometry with clinical balance tests in older fallers and non-fallers,” Age and Ageing, vol. 38, no. 3, pp. 308-313, 2009.
[15] W. Janssen, D. G. Kulcu, H. Horemans, H. J. Stam, and J. Bussmann, “Sensitivity of accelerometry to assess balance control during sit-to-stand movement,” IEEE Trans. Neural Systems and Rehabilitation, vol. 16, no. 5, pp. 479-484, 2008.
[16]J. Bames, V. Ramachandra, K. Gilani, E. Guenterberg, H. Ghasemzadeh, and R. Jafari, “Locomotion monitoring using body sensor networks,” International Conference on Information Processing in Sensor Networks, no. 47, pp. 555-556, 2008.
[17] B. R. Greene and R. A. Kenny, “Assessment of cognitive decline through quantitative analysis of the Timed Up and Go Test,” IEEE Trans. Biomedical Engineering, vol. 59, no. 4, pp. 988-995, 2012.
[18] M. F. Gago, V. Fernandes, J.Ferreira, H. Silva, L. Rocha, E. Bicho, and N. Sousa, “Postural stability analysis with inertial measurement units in Alzheimer's disease,” Dementia and Geriatric Cognitive Disorders Extra: Dement Geriatr Cogn Disord Extra, vol. 4, no. 1, pp. 22-30, 2014.
[19]J. H. Morra, Z. Tu, L. G. Apostolova, A. E. Green, A. W. Toga, and P. M. Thompson, “Comparison of AdaBoost and support vector machines for detecting Alzheimer’s disease through automated hippocampal segmentation,” IEEE Trans. ON MEDICAL IMAGING, vol. 29, no. 1, pp. 30-43, 2010.
[20] S. Zhang, S. I. McClean, C. D. Nugent, M. P. Donnelly, L. Galway, B. W. Scotney, and I. Cleland, “A Predictive Model for Assistive Technology Adoption for People With Dementia,” IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, vol. 18, no. 1, pp. 375-383, 2014.
[21]G. S. P. Mok, Y. Y. Wu, K. M. Lu, J. Wu, L. K. Liang, and T. H. Wu, “Evaluation of the screening power of Cognitive Abilities Screening Instrument for probable Alzheimer’s disease using voxel-based morphometry,” Clinical Imaging, vol. 36, no. 1, pp. 46-53, 2012.
[22]P. D. Brown, J. C. Buckner, J. O’Fallon, N. L. Iturria, B. P. O’NEILL, C. A. Brown, B. W. Scheithauer, R. P. Dinapoli, R. M. Arusell, W. J. Curran, R. Abrams, and E. G. Shaw, “Importance of baseline mini-mental state examination as a prognostic factor for patients with low-grade glioma,” Journal of Radiation Oncology, vol. 59, no. 1, pp. 117-125, 2004.
[23]Y. Shibamoto, F. Baba, K. Oda, S. Hayashi, M. Kokubo, S. Ishihara, Y. Itoh, H. Ogino, and M. Koizumi, “Incidence of brain atrophy and decline in Mini-Mental State Examination Score after whole-brain radiotherapy in patients with brain metastases: A prospective study,” Journal of Radiation Oncology, vol. 72, no. 4, pp. 1168-1173, 2008.
[24]A. M. Crizzle, S. Classena, M. Bédardb, D. Lanforda, and S. Wintera, “MMSE as a predictor of on-road driving performance in community dwelling older drivers,” Accident Analysis and Prevention, vol. 49, no. 1, pp. 287-292, 2012.
[25] M. F. Folstein, S. E. Folstein, and P. R. McHugh, “«Mini-mental state»: A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189-198, 1975.
[26] D. Maquet, F. Lekeu, E. Warzee, S. Gillain, V. Wojtasik, E. Salmon, J. Petermans, and J. L. Croisier, “Gait analysis in elderly adult patients with mild cognitive impairment and patients with mild Alzheimer’s disease:Simple versus dual task: a preliminary report,” Clinical Physiology and Functional Imaging, vol. 30, no. 1, pp. 51-56, 2010.
[27] M. R. Lin, H. F. Hwang, M. H. Hu, H. D. Wu, Y. W. Wang, and F. C. Huang, “Psychometric comparisons of the timed up and go, one-leg stand, functional reach, and tinetti balance measures in community-dwelling older people,” Journal of the American Geriatrics Society, vol. 52, no. 8, pp. 1343-1348, 2004.
[28]G. Allali, M. Meulen, and F. Assal, “Gait and cognition: The impact of executive function,” Schweizer Archiv fur Neurologie und Psychiatrie, vol. 161, no. 6, pp. 195-199, 2010.
[29]R. K. Y. Chong, F. B. Horak, J. Frank, and J. Kaye, “Sensory organization for balance: Specific deficits in Alzheimer’s but not in Parkinson’s disease,” Journals of Gerontology, vol. 54, no. 3, pp. 122-128, 1999.
[30]Y. Rolland, G. A. Van Kan, F. Nourhashemi, S. Andrieu, C. Cantet, S. Guyonnet-Gillette, and B. Vellas, “An abnormal “One-leg Balance” test predicts cognitive decline during Alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 16, no. 3, pp. 525-531, 2009.
[31]J. S. Wang, Y. L. Hsu, and J. N. Liu, “An inertial-measurement-unit-based pen with a trajectory reconstruction algorithm and its applications,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3508-3521, 2010.
[32] W. T. Fong, S. K. Ong, and A. Y. C. Nee, “Methods for in-field user calibration of an inertial measurement unit without external equipment,” Measurement Science and Technology, vol. 19, no. 8, pp. 1-11, 2008.
[33] R. E. Mayagoitia, J. C. Lo ̈tters, P. H. Veltink, and H. Hermens, “Standing balance evaluation using a triaxial accelerometer,” Gait and Posture, vol. 16, no. 1, pp. 55-59, 2002.
[34] M. J. Floor-Westerdijk, H. M. Schepers, P. H. Veltink, E. H. F. van Asseldonk, and J. H. Buurke, “Use of Inertial Sensors for Ambulatory Assessment of Center-of-Mass Displacements During Walking,” IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 59, no. 7, pp. 2080-2084, 2012.
[35]K. Gielo-Perczak, “The golden section as a harmonizing feature of human dimensions and workplace design,” Theoretical Issues in Ergonomics Science, vol. 2, no. 4, pp. 336-351, 2001.
[36] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, “Activity recognition and monitoring using multiple sensors on different body positions,” in Proc. Int’l Workshop on Wearable and Implantable Body Sensor Networks, 2006, pp. 113-116.
[37]Y. Freund and R. E. Schapire, “A short introduction to boosting,” Journal of Japanese Society for Artificial Intelligence, vol.14, pp. 771-780, 1999.