| 研究生: |
徐偉程 Hsu, Wei-Cheng |
|---|---|
| 論文名稱: |
應用虛擬實境技術於多軸工具機切削運動之研究 Study on Cutting Motion of Multi-axis Machine Tool by Virtual Reality |
| 指導教授: |
李榮顯
Lee, Rong-Shean |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 多軸工具機 、虛擬實境 、切削運動 |
| 外文關鍵詞: | Multi-axis Machine Tool, Cutting Motion, Virtual Reality |
| 相關次數: | 點閱:116 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從設計到製造的每一個決策都需要依賴工程師的專業知識作判斷,任何一個決策錯誤都會導致多餘的成本與延遲上市時間,如果在每一個決策階段都有適當的輔助決策機制提供適當的資訊,整個生產過程就會變得更順利。虛擬實境是一種有用的工具,它可以用來檢視產品的製造過程,因此便可以在第一時間考慮到其產品的可製造性。
本論文主旨為利用WTK建立一虛擬多軸工具機之工作環境與介面,提供使用者進行切削運動之模擬。工具機的機型是以工作台傾斜型(u、w)之五軸雕模機為例,系統內部建立其專屬的後處理程式。在動態模擬上本文採用線性差值的方式,來呈現工具機的運動。使用者可經由虛擬工具機的方向控制鍵,進行手動調整,或輸入NC File來進行自動加工的模擬。在碰撞檢測方面,本文採用包絡盒的方式進行檢測,目的是除了可以預測出可能碰撞的位置外,亦可確保模擬時工具機運動的流暢度,碰撞檢測的結果會以及時顯示的方式或是以檔案的方式告知使用者發生碰撞的位置。透過上述的功能,使用者可以經由視窗觀察加工過程工具機模擬切削運動情形,並可判斷出可能發生工具機碰撞的情形及發生碰撞的位置。
本系統將可應用在加工程序的規劃與製程的預視,達到縮短產品製程的時間,進而提升產品競爭力。
There are many important decisions to be made from the design stage to the manufacturing stage of the product development, each has great effect on production cost and time-to-market. Engineers make these decisions by their expertise. If there is information provided to help engineers making decisions, the whole process will be smoother and the time-to-market can be reduced. The virtual-reality technique can be used to verify manufacturing process and evaluate manufacturability in advance.
The objective of this research is to construct a virtual multi-axis machine tool environment and interface for kinematic simulation of machine tool . The configuration of the virtual machine is based on rotary table type five-axis sculpturing machine. The postprocessor is implemented in the simulation system. The kinematics of the virtual machine is represented by linear interpolation. Users can perform manual operation by the direction buttons on the control panel or import NC file to perform automatic machining. Bounding box technique is used to perform collision detection, which has the advantage of detecting collision quickly while maintaining the smoothness of simulation. The result of collision detection can be shown real-time or saved into file to inform the user. With the provided functions of the developed software system, the user can verify the kinematics of the machine tool and identify possible collision between machine tool and workpiece.
The developed system can be used for process planning and preview to reduce planning time and to increase competitiveness.
1. Shukla, C., M. Vazquez, and F. F. Chen, “Virtual manufacturing:an Overview”, Journal of Future Generation Computer System, Vol. 31, No1-2, pp. 79-82, 1996.
2. Cobb, Sue V.G., Mirabelle D. D’Cruz and John R. Wilson,”Integrated manufacture: A role for virtual reality,” Journal of Ergonomics, Vol. 16, No. 4-6, pp. 411-425, 1995.
3. Vince,J., “Virtual Reality System,” Adsion-Wesley Publishing Company, pp.159-163, pp.166-168, 1995.
4. Sutherland, V.E., “The Ultimate Display,” Proceedings of the IFIP Conference 65, pp.506-509.
5. Gossweilier, R., Long, C., Koga, S. and Pausch, R., “DIVER : a DIstributed Virtual Environment Research Platform,” IEEE Symposium on Research Frontiers in Virtual Reality, pp. 10-15, October, 1993.
6. Cruz-Neira, C. et al., “Scientists in Wonderland:A Report on Visualization Applications in the CAVE Virtual Reality Environment,” IEEEE Symposium on Research Frontiers in Virtual Reality,” pp.59-66, October, 1993.
7. McCarty, W.D., S. Sheasby, P. Amburn, M.R. Stytz, and C. Switzer, “A Virtual Cockpit for a Distributed Interactive Simulation,” IEEE Computer Graphics&Applications, Vol. 14, No. 1, pp.49-54, Jan, 1994.
8. Tustar, H. and G. Rajit, “COVIRDS:A Conceptual Virtual Design System,” Proceeding of the 1995 ASME Computers in Engineering Conference and the Engineering Database Symposium, pp.959-966, 1995.
9. Peng, Q., F. R. Hall and P. M. Lister, “Application and evaluation of VR-based CAPP system”, Journal of Material Processing Technology, Vol. 107, pp. 153-159, 2000.
10. Iuliano, M. and A. Jones, “Controlling activities in a virtual manufacturing cell,” Proceedings of Winter Simulation Conference, pp. 1062-1067, 1996.
11. Pere, E., N. Langrana, D. Gomez and G. Burdea, “Virtual Mechanical Assembly on a PC-Based System,” Proceeding of the 1996 ASME Design Engineering Conference, August, Irvine, California, 1996.
12. McLean, C. R.”Modeling production system using virtual reality techniques,” Proceeding of IEEE on System, Man, and Cybernetics, Vol.1, pp. 344-347, 1998.
13. Lefort, L. and T. Kesavadas, “Interactive Virtual Factory Design of Shopfloor Using Single Cluster Analysis,” Proceedings of IEEE on Robotics and Automation, Vol. 1, pp.266-271, 1998.
14. Lombardo, J. C., M. P. Cani and F. Neyret, “Real-time Collision Detection for Virtual Surgery”, IEEE, 1999.
15. Tzeng, H. W. and C. M. Tien, “Design of a Virtual Laboratory for Teaching Electric Machinery,” Proceedings of IEEE on Systems, Man, and Cybernetics, Vol.2, pp.971-976, 2000.
16. Carpenter, I.D., J.M. Ritchie, R.G. Dewar and J.E.L. Simmons, “Virtual manufacturing, ” Manufacturing Engineer, Vol.76, Issue: 3, 1997.
17. Hanwu, H., X. Youlun, Y. Shuzi and W. Bo, “Virtual manufacturing systems and environment,” Proceedings of IEEE on Industrial Technology, pp. 13-24, 1996.
18. Steffan, R., U. Schull, and T. Kuhlen, “Integration of virtual reality based assembly simulation into CAD/CAM environments,” Proc. of 24th Annual Conference of the IEEE Industrial Electronics Society, Vol. 4, pp. 2535-2537, 1998.
19. Carpenter, I.D., J.M. Ritchie, R.G. Dewar, J.E.L. Simmons, “Virtual manufacturing,” Manufacturing Engineer, Vol. 76, Issue 3, pp 113-116, 1997.
20. Lanzagorto, M.; R. Rosenberg, L.J. Rosenblum, and E.Y. Kuo, “Rapid prototyping of virtual environments, ” Computing in Science & Engineering, Vol. 2, Issue 3, pp. 68-73, 2000.
21. Seo, Y., T.H. Choi, and S.H. Suh, “Web-based Implementation of Virtual Machine Tools,” Proc. of the 4th Korea-Russia Int’l Symp on Science and Tech, pp. 122-127 vol. 3, 2000.
22. Kalawsky, Roy S., The Science of Virtual Reality and Virtual Environments, Addison Wesley, pp. 330, 1994.
23. Burdea, G. and P. Coiffet, Virtual Reality Technology, John Wiley and Sons, Inc., pp. 331-332, 1993.
24. Hitchcick, M.F., A.D. Baker, and J.R. Brink, “The Role of Hybrid System Theory in Virtual Manufacturing,” Proceedings of IEEE on Computer-Aided Control System Design, pp.345-350, 1994.
25. Jayaram, S., U. Jayaram, Y. Wang, and H. Tirumali, “VADE: A Virtual Assembly Design Environment,” IEEE Computer Graphics & Applications, Vol. 19, No. 6, pp. 44-50, November/December 1999.
26. Bedi, S. and G. W. Vickers, “Postprocessor for Numerically Controlled Machine Tools”, Computers in Industry, Vol. 9, No. 1, pp. 3-18 (1987).
27. Balaji, B. K., Development and Interface of a Postprocessor for a CNC Mill, Master Thesis, California State University, Long Beach, USA, December (1993).
28. Lin, P. D. and M. B. Chu, “Machine Tool Settings for Manufacture of Cams with Flat-face Followers”, International Journal of Machine Tools and Manufacture, Vol. 34, No. 8, pp. 1119-1131 (1994).
29. Stute, G. and H. Damsohn, “Special Problems in Postprocessing of Multi-axis Milling Machines”, Proceedings of the Second IFIP/IFAC International Conference on Programming Languages for Machine Tools, PROLOMAT ‘73, pp. 737-746 (1973).
30. Vickers, G. W., S. Bedi and R. Haw, “The Definition and Manufacture of Compound Curvature Surfaces Using G-surf”, Computers in Industry, Vol. 6, No. 3, pp. 173-183 (1985).
31. Suh, S. H. and K. S. Lee, “A Prototype CAM System for Four-axis NC Machining of Rotational-Free-Surfaces”, Journal of Manufacturing Systems, Vol. 10, No. 4, pp. 322-331 (1991).
32. Zahner, S. P., “The Value of BCL to the CAD/CAM User”, Modern Machine Shop, Vol. 64, No. 2, pp. 72-80 (1991).
33. Chang, C. H. and M. A. Melkanoff, NC Machine Programming and Software Design, Prentice-Hall, New Jersey (1989).
34. Holi, Toshio and Yuichi Komazawa, “The Function and Application of Smart Motion Controller”, Mechanical Engineering, Vol. 43, No. 13, pp. 61-65 (1995). (in Japanese)
35. EIA Standard RS-267-B: Axis and Motion Nomenclature for Numerical Controlled Machines, Washington, D.C.: Electronic Industries Association, June (1983).
36. ISO Standard 841-1974, Axis and Motion Nomenclature for Numerical Controlled Machines, Geneva, Switzerland: International Organization for Standardization (1974).
37. Sakamoto, S. and I. Inasaki, “Analysis of Generating Motion for Five-axis Machining Centers”, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 59, No. 561, pp. 1553-1559 (1993).
38. Sense 8 Corporation, “WorldToolKit Reference Manual R9,” Sense 8 Corporation, pp.2-6, 1999.
39. 徐鵬盛, “虛擬實境之多軸工具機運動研究,” 碩士論文, 國立成功大學機械工程研究所, 90年7月.
40. 李景華, “三度空間虛擬實境的核心技術—3D電腦繪圖,” 資訊與電腦, pp.91-93, 1996年12月.
41. 佘振華, “空間凸輪五軸加工數值控制程式設計系統之研究,” 博士論文, 國立成功大學機械工程研究所, 86年.
42. 李政男, “應用包絡元件於多軸加工數值控制程式設計系統之研究,” 博士論文, 國立成功大學機械工程研究所, 90年.
43. 梁日輝, “最小侵入式醫療用機械臂之設計與運動模擬系統,” 碩士論文, 國立成功大學機械工程研究所, 88年.
44. 李榮顯, “數值控制機械,” 三民書局, pp.57, pp.347, 1991年2月
45. 侯俊傑, ”Visual C++ 物件導向MFC程式設計-基礎篇,” 旗標出版有限公司, pp.56-58, pp.77-79, 1994年8月.
46. 位元文化研究室, “精通視窗程式設計,” 文魁資訊股份有限公司, pp.6-4, 2000年9月.