簡易檢索 / 詳目顯示

研究生: 楊政賢
yang, cheng-hsien
論文名稱: 含矽電磁鋼在模擬熱軋製程中之氧化行為研究
Oxidation behavior of Si-containing electrical steel in simulated hot-rolling conditions
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 103
中文關鍵詞: 電磁鋼高溫氧化矽酸鐵拉伸應變水蒸氣
外文關鍵詞: Si-containing electrical steel, high temperature oxidation, fayalite, air-H2O atmosphere, tensile strain
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討含矽電磁鋼在模擬熱軋過程中之高溫氧化現象,並分析表面生成之銹皮結構與性質。研究所用之鋼材矽含量在0.01~1.91 wt.%之間,利用熱機軋延模擬機(Thermo-mechanical simulator)於850~1200 ℃之間,在乾燥或含水蒸氣的空氣中氧化2分鐘,部分鋼片在氧化過程施以8%應變。經模擬熱軋氧化後的含矽鋼,利用X-ray繞射分析儀鑑定其銹皮結晶結構,並藉由掃描式電子顯微鏡與穿透式電子顯微鏡觀察氧化銹皮的形貌,配合能量散射光譜儀及電子微探針分析儀鑑定銹皮組成。

    研究結果顯示,在850 ℃下氧化後,三種不同矽含量的鋼材表面均生成Fe2O3。在1000 ℃氧化後,矽含量0.01 wt.%的低碳鋼表面生成三種氧化鐵,α-Fe2O3、Fe3O4及FeO;而矽含量1.91 wt.%的電磁鋼氧化後,銹皮內側形成良好抑制氧化的含矽氧化層,外側則僅生成Fe2O3。隨著鋼材矽含量的增加,含矽氧化物存在於內側銹皮變得顯著;阻礙鐵離子的向外擴散並降低鋼材的氧化速率,使氧化銹皮總厚度減少且低價數氧化鐵有消失的趨勢。若提升至1200 ℃氧化,三種不同矽含量的鋼材銹皮厚度均大幅度增加。對於矽含量0.51 wt.%以上的鋼材,銹皮之氧化矽與FeO共晶反應生成熔融態矽酸鐵,反而有利於鐵離子的擴散,造成氧化速率的上升,故FeO、Fe3O4與Fe2O3於外側銹皮生成。

    當氧化過程中施以8 %的拉伸應變。在850 ℃下氧化後,矽含量0.01 wt.%之鋼材表面銹皮為Fe2O3、Fe3O4和FeO,其銹皮厚度高於未施應變氧化的結果。在1000 ℃氧化後,矽含量較高的鋼材仍可發現矽氧化物聚集在基材與銹皮介面處並提供保護性,其外側生成之氧化鐵種類與未施應變相同。於1200 ℃氧化後,矽含量高於0.51 wt.%的鋼材於基材與銹皮界面處生成之熔融矽酸鐵皆有變薄的趨勢。可能是施加拉伸應變促使連續且具保護性的矽氧化物或矽酸鐵無法生成,因此鐵離子更容易沿著應力造成的缺陷擴散至外部形成氧化鐵,進而加速氧化。

    當含矽鋼於含水蒸氣的空氣下氧化時。在850 ℃氧化後,矽含量0.01 wt.%的鋼材銹皮厚度遠大於空氣下氧化的結果,顯示水蒸氣具加速氧化的效果。對於矽含量高於0.51 wt.%的鋼材,雖然在1000 ℃氧化後仍可觀察到矽氧化物存在於內側銹皮,但與空氣下氧化相較,氧化鐵種類改變與銹皮厚度增加,顯示其保護性有下降的趨勢。在1200 ℃氧化後,仍可於鋼材內側銹皮發現熔融態矽酸鐵的生成,但其厚度明顯較薄,使其阻礙擴散與抑制氧化能力下降。故在含水蒸氣的環境下氧化時生成之銹皮總厚度大於空氣下氧化的結果。

    The main goal of this study is to investigate the high-temperature oxidation of the three hot-rolling steels containing 0.01, 0.51, and 1.91 wt.% Si over the temperature range of 850~1200oC at various O2-containing environments. The thermo-mechanical simulator (Gleeble machine) was employed for oxidation tests in various conditions. The effect of 8% applied tensile strain on the scale constitution and phases of these steels was also investigated through XRD, SEM, EPMA, and TEM analyses.

    The results showed that an exclusive layer of Fe2O3 formed on the three steels after oxidation at 850oC for 2 min, however, the scales formed at 1000oC for 2 min were strongly dependent on Si content, being composed of FeO, Fe3O4, and Fe2O3 for the 0.01%Si steel. However, the scales formed on the 1.91%Si steel consisted of SiO2 or Fe2SiO4 in the inner-portion and of Fe2O3 formed in the outer-portion. The amounts of Si-rich oxides gradually increased with increasing Si-content, which cause a reduction of outward iron-diffusion and inward oxygen-diffusion, thereby reducing the amounts of FeO and oxidation rates. The scale thickness of the alloys significantly increased when exposed at 1200oC for 2 min. The formation of partial melting fayalite for the steels containing 0.51% Si or higher enhanced outward diffusion of iron, which increased the oxidation rates and in turn resulted in the formation of iron oxides (FeO, Fe3O4, and Fe2O3).

    When 8% tensile strain was applied during oxidation at 850oC, FeO, Fe3O4, and Fe2O3 formed on the 0.01%Si steel, and the scale thickness was much thicker than that of the strain-free oxidation. The Si-rich oxide grown in the inner-portion of the scales can provide its passivity when oxidized at 1000oC although iron oxides formed in the outer-portion of the scales were nearly identical to those of the strain-free condition. At 1200oC, however, the fayalite layer became much thinner under the applied-strain condition, indicating that the protective fayalite layer was difficult to form, which in turn enhanced outward iron diffusion along the defects created under tensile strain, thereby causing faster oxidation rates.

    In addition, the effect of water vapor on the oxidation behavior of the steels was also investigated. It was concluded that the scale thickness of the three steels was much thicker when they were exposed in wet air.

    摘要 I Abstract IV 誌謝 VI 總目錄 VIII 表目錄 X 圖目錄 XI 一. 前言 1 二. 基礎理論與文獻回顧 3 2-1 氧化熱力學 3 2-2 氧化動力學 4 2-3 合金元素對鋼之高溫氧化行為的影響 6 2-3-1 氧化鐵 7 2-3-2 含矽氧化物 9 2-4 應力對氧化銹皮的影響 13 2-5 含水蒸氣之氣氛下的氧化行為與銹皮性質 14 三. 實驗方法與步驟 32 3-1 實驗材料 32 3-2 Gleeble熱機軋延模擬試驗(Thermo-mechanical simulation test) 32 3-3 銹皮性質分析 33 四. 結果與討論 37 4-1 矽含量對鋼材氧化銹皮組成結構的影響 37 4-1-1 銹皮組成分析 37 4-1-2 銹皮顯微組織觀察 39 4-2 拉伸應變對鋼材銹皮結構的影響 44 4-2-1 銹皮組成分析 44 4-2-2 顯微組織觀察 47 4-3 水蒸氣對鋼材氧化銹皮結構的影響 50 4-3-1 銹皮組成分析 51 4-3-2 顯微組織觀察 53 五. 結論 96 參考文獻 98

    1. R. Y. Chen and W. Y. Yuen, “A Study of the Scale Structure of Hot-Rolled Steel Strip by Simulated Coiling and Cooling”, Oxidation of Metals, Vol.53, p.539 (2000)
    2. R. Y. Chen and W. Y. Yuen, “Oxidation of Low-Carbon, Low-Silicon Mild Steel at 450-900℃ Under Conditions Relevant to Hot-Strip Processing”, Oxidation of Metals, Vol.57, p.53 (2002)
    3. I. Svedung and N. G. Vannerberg, “the Influence of Silicon on the Oxidation Properties of Iron”, Corroion Science, Vol.14, p.391 (1974)
    4. C. W. Tuck, Proceedings of the First International Congress of Metallic Corrosion, Vol.221,Butterworths, London (1961)
    5. T. Adachi and G. H. Meier, “Oxidation of Iron-Silicon Alloys”, Oxidation of Metals, Vol.27, p.347 (1987)
    6. T. Fukagawa, H. Okada, Y. Maehara, “Mechanism of Red Scale Defect Formation in Si-added Hot-rolled steel Sheets”, ISIJ International, Vol. 34, p. 906 (1994)
    7. H. Okada, T. Fukagawa, H. Ishihara, A. Okamoto, M. Azuma and Y. Matsuda, “Effects of Hot Rolling and Descaling Condition on Red Scale Defects Formation”, ISIJ, Vol.80, p.849 (1994)
    8. D. R. Gaskell, “Introduction to the Thermodynamics of Materials, 3rd ed.”, Taylor and Francis, 1995
    9. D. A. Jones, “Principles and Prevention of Corrosion, 2nd ed.”, Macmillan Publishing Company, New York, 1992
    10. P. Kofstad, “High Temperature Corrosion”, Elsevier Applied Science, London and New York, 1988
    11. N. Birks and G. H. Meier, “Introduction to High Temperature Oxidation of Metals”, Edward Arnold, Pittsburgh, 1983
    12. J. Païdassi, Acta Metall., “Sur la cinetique de l’oxydation du fer dans l’air dans l’intervalle 700-1250℃”, Vol.6, p.184 (1958)
    13. R. D. Shaw and R. Rolls, “The Calculation of Relative Layer Thicknesses in a Two-Component Scale”, Corrosion Science, Vol.14, p. 443 (1974)
    14. R. Y. Chen and W. Y. D. Yuen, “Oxidation of Low-Carbon, Low-Silicon Mild Steel at 450-900℃ Under Conditions Relevant to Hot-Strip Processing”, Oxidation of Metals, Vol.57, p.53 (2001)
    15. D. R. Holmes, “New Corrosion-resistance High Temperature Heat Exchanger Materials”, Corrosion Science, Vol.8, p.603 (1968)
    16. 金屬材料之高溫氧化與腐蝕,日本腐蝕防蝕協會編,池田雄二等著,黃忠良譯,復漢出版社,第七十頁,1998年
    17. A. Atkinson and J. W. Gardner, “The diffusion of Fe3+ in amorphous SiO2 and the protective properties of SiO2 layers”, Corrosion Science, Vol.21, p.49 (1981)
    18. J. M. Francis and J. A. Jutson, “the Role of Silicon in Determining the Oxidation Resistance of an Austenitic Steel”, Materials Science and Engineering, Vol.4, p.84 (1969)
    19. Zs. Tkei, H. Viefhaus, H. J. Grabke, “Initial stages of oxidation of a 9CrMoV-steel: role of segregation and martensite laths”, Applied Surface Science, Vol.165, p.23 (2000)
    20. A. M. Huntz, V. Bague, G. Beauplé, C. Haut, C. Sévérac, P. Lecour, X. Longaygue and F. Ropital, “Effect of silicon on the oxidation resistance of 9% Cr steels”, Vol.207, p.255 (2003)
    21. S. Henry, A. Galeria and L. Antoni, “Abnormal Oxidation of Stabilized Ferritic Stainless Steels in Water Vapor”, Materials Science Forum, Vol.369, p.353 (2001)
    22. T. Fukagawa, H. Okada, Y. Maehara, “Effect of S on Hydraulic-descaling-ability in Si-added Hot-rolled Steel Sheets”, ISIJ, Vol. 81, p.559 (1995)
    23. T. Fukagawa, H. Okada, Y. Mashara, H. Fujikawa, “Effect of small amount of Ni on Hydraulic-descaling-ability in Si-added Hot-rolled Steel Sheets”, ISIJ, Vol. 82, p.63 (1996)
    24. T. Fukagawa, H. Okada, H. Fujikawa, “Effect of P on hydraulic-descaling-ability in Si added Hot-rolled Steel Sheets”, ISIJ, Vol.83, p.305 (1997)
    25. M. Okita, A. Nagai, I. Sinagawa, K. Horinouchi, CAMP-ISIJ, Vol.2, p.1509 (1989)
    26. S. Taniguchi, K. Yamamoto, D. Megumi, T. Shibata, “Characteristics of scale/substrate interface area of Si-containing low-carbon steels at high temperatures”, Materials Science and Engineering A308, p.250 (2001)
    27. C. W. Tuck, “Non-protective and Protective Scaling of a Commercial 1.75% Silicon-Iron Alloy in the Range 800℃-1000℃”, Corrosion Science, Vol.5, p.631 (1965)
    28. M. Diéz-Ercilla, T. Ros-Yáñez, R. Petrov, Y.Houbaert and R. Colás, “Oxidation of Silicon Steels”, Corrosion Engineering, Science and Technology, Vol.39, p.295 (2004)
    29. P. Wu, G. Eriksson, A. D. Pelton and M. Blander, “Prediction of the Thermodynamic Properties and Phase Diagrams of Silicate Systems–Evaluation of the FeO-MgO-SiO2 System”, ISIJ Int., Vol. 33, 26 (1993)
    30. R. C. Logani and W. W. Smeltzer, “Kinetics of wustite-fayalite scale formation on iron-silicon alloys”, Oxidation of Metals, Vol.1, p.3 (1969)
    31. R. C. Logani and W. W. Smeltzer, “The development of the wustite-fayalite scale on an iron-1.5 wt.% silicon alloy at 1000℃”, Oxidation of Metals, Vol.3, p.15 (1970)
    32. R. C. Logani and W. W. Smeltzer, “The growth of wustite-fayalite nodules on an iron-1.5 wt. % silicon alloy exposed to carbon dioxide-carbon monoxide atmospheres”, Oxidation of Metals, Vol.3, p.279 (1971)
    33. M. Schütze, “Mechanical Properties of Oxide Scales”, Oxidation of Metals, Vol.44, p.29 (1995)
    34. H. E. Evans, “Stress Effects in High Temperature Oxidation of Metals”, International Materials Reviews, Vol.40, p.1 (1995)
    35. N. B. Pilling and R. E. Bedworth, “the Oxidation of Metals at High Temperature”, Journal of the Institute of Metals, Vol.29, p.529 (1923)
    36. J. K. Tien and J. M. Davidsion, “Stress Effects and the Oxidation of Metals”, AIME, New York (1975)
    37. Y. Hidaka, T. Anraku and N. Otsuka, “Deformation of Iron Oxides upon Tensile Tests at 600~1250℃”, Oxidation of Metals, Vol.59, p.97 (2003)
    38. I. Kvernes, M. Oliveira and P. Kofstad, “High Temperature Oxidation of Fe-13Cr-xAl Alloys in Air/H2O Vapor Mixtures”, Corrosion Science, Vol.17, p.237 (1977)
    39. D. L. Douglass, P. Kofstad, A. Rahmel and G. C. Wood, “International Workshop on High-Temperature Corrosion”, Oxidation of Metals, Vol.45, p.529 (1996)
    40. C. W. Tuck, M. Odgers and K. Sachs, “The Oxidation of Iron at 950℃ in Oxygen/Water Vapor Mixtures”, Corrosion Science, Vol. 9, p. 271 (1969)
    41. A. Rahmel and J. Tobolski, “Einfluβ von Wasserdampf und Kohlendioxyd auf die Oxydation von Eisen-Silicium-Legierungen in Sauerstoff bei Temperaturen von 750 bis 1050℃”, Werkst. Korros., Vol.16, p.662 (1965)
    42. K. Kusabiraki, T. Sugihara and T. Ooka, “High Temperature Oxidation of Fe-Si Alloys in Ar-H2O Atmospheres”, ISIJ, Vol.77, p.123 (1991)
    43. M. Fukumoto, S. Maeda, S. Hayashi and T. Narita, “Effect of Water Vapor on the Oxidation Behavior of Fe-1.5Si in Air at 1073 and 1273K”, Oxidation of Metals, Vol.55, p.401 (2001)
    44. H. Asteman, J. E. Svensson, L. G. Johansson and M. Norell, “Indication of Chromium Oxide Hydroxide Evaporation During Oxidation of 304L at 873 K in the Presence of 10% Water Vapor”, Oxidation of Metals, Vol.52, p.95 (1999)
    45. H. Asteman, J. E. Svensson, M. Norell and L. G. Johansson, “Influence of Water Vapor and Flow Rate on the High-Temperature Oxidation of 304L; Effect of Chromium Oxide Hydroxide Evaporation”, Oxidation of Metals, Vol.54, p.11 (2000)
    46. A. Yamauchi, K. Kurokawa and H. Takahashi, “Evaporation of Cr2O3 in Atmospheres Containing H2O”, Oxidation of Metals, Vol.59, p.517,(2003)
    47. E. J. Opila, “Volatility of Common Protective Oxides in High-Temperature Water Vapor”, Materials Science Forum, Vol.461-464, p.765 (2004)
    48. A. Hashimoto, “The effect of H2O gas on volatilities of planet-forming major elements”, Geochimica et Cosmochimica Acta, Vol.56, p.511 (1992)
    49. E. Copland, D. Myers. E. J. Opila and N. S. Jacobson, “High Temperature Corrosion and Materials Chemistry Ⅲ”, The Electrochemical Society, Inc., Pennington, NJ, 2001
    50. E. J. Opila and R. E. Hann, “Paralinear Oxidation of CVD SiC in Water Vapor”, Journal of the American Ceramic Society, Vol.80, p. 197 (1997)

    下載圖示 校內:2008-07-21公開
    校外:2010-07-21公開
    QR CODE