| 研究生: |
趙婉琴 Chao, Wan-Chin |
|---|---|
| 論文名稱: |
以分子動力學模擬研究二氧化釷奈米顆粒的燒結 Study of Thorium Dioxide Nano-particle Sintering by Molecular Dynamics Simulations |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 奈米燒結 、二氧化釷 、分子動力學模擬 、核能燃料 |
| 外文關鍵詞: | Molecular dynamic simulation, ThO2, Nanosintering, Nuclear fuel |
| 相關次數: | 點閱:89 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用分子動力學模擬以Buckingham勢能進行不同粒徑3.36nm和4.49nm之ThO2奈米陶瓷顆粒的燒結研究。本研究創新地設計三維燒結模型,將同一尺寸顆粒在三維空間中以面心方式堆積建立三維燒結模型,進行不同燒結溫度1800K至2200K的燒結模擬,可以直接計算出各種控制變因對於孔隙率變化的影響。由於實際上燒結樣品中每個晶粒之間可能有各種不同排列方式,而不同排列方式可能存在各種初始接觸面形式,可能影響燒結結果,我們將探討不同初始接觸面組合對燒結緻密程度之影響。但由於模擬受限於計算時間等因素,無法完全達到實際上之條件,因此本研究僅以有限的例子進行計算。首先為了驗證有限的初始接觸面種類模型是否有辦法近似實際燒結的情形,我們針對以不同初始接觸面組合模型進行三次燒結模擬測試,結果顯示粒徑3.36nm小顆粒模型在溫度1800K時,顆粒之間部分相互吸引也有些相互排斥,使顆粒無法均勻分布使燒結結果重複性低,但當溫度1900K以上時,無論是粒徑3.36nm或4.49nm的顆粒,所有初始接觸面組合模型皆有很高的一致性。證明在有限的模型模擬結果,當溫度夠高時無論晶粒初始排列方式為何,若顆粒分布均勻燒結結果都能較高的一致性,可符合實際上燒結實驗時晶粒方向任意排列之情況。
接著本研究分別探討在燒結初期時燒結溫度、顆粒尺寸等條件對ThO2燒結之影響,我們亦觀察到燒結初期有顆粒旋轉的現象,可能是受到顆粒偶極-偶極相互作用力所致。關於燒結溫度對緻密化行為的影響,在實際上燒結緻密度和溫度正相關,模擬也可以做相似的研究,在本研究中以孔隙率描述緻密化行為,結果顯示無論粒徑大小,當燒結溫度1900K以上時燒結結果一致性佳,且皆有較低之孔隙率。此燒結溫度實驗值2200K相較已證明這是最低的燒結溫度。接下來討論顆粒尺寸和分布均勻度之影響結果發現未施加外壓時,若顆粒均勻混和則溫度1900K以上小顆粒平均孔隙率可達約9%-10%,大顆粒則大約在11%-14%。我們也針對小顆粒在1800K時顆粒不均勻導致高孔隙率的模型進行施加外壓500MPa的模擬測試,結果顯示給予外壓後顆粒可均勻分布使最後孔隙率降低。
本研究中的燒結緻密機制是可分成顆粒旋轉機制、接觸面微調機制和表面擴散機制三種,在燒結過程中的第一階段為燒結開始至大約0.04ns,顆粒會旋轉調整晶向並逐漸接近直到接觸,旋轉趨動力推測為顆粒間的偶極相互作用力。到了第二階段(t=0.04~0.4ns)有些顆粒仍有些微旋轉以進行接觸面的調整,第二階段的主要機制為接觸面的微調作用,目的為讓接觸面達到最低能量之特定某些接觸面。第三階段是從0.4ns直到2.5ns,此時僅剩下表面氧原子仍繼續擴散。故第三階段的主要燒結機制為表面氧的擴散作用。根據本研究之結果,當顆粒排列均勻的前提下,無論顆粒排列方式只要燒結溫度在1900K以上,最終孔隙率可達9-10%,相較於Kutty, et al. [1]的單相ThO2燃料芯塊(pellet)的燒結實驗,ThO2在溫度1650oC (1923K)常壓下燒結的孔隙率13%。我們已知當顆粒粒徑越小時燒結緻密度越高,由於其實驗中顆粒粒徑為微米尺度,而我們的模型中顆粒為奈米尺度,因此會有較低的孔隙率。
In recent times, thorium-based materials have regained interest as a nuclear fuel due to their unique characteristics such as abundant resource, long fuel cycles, high burn up, and improved waste form characteristics, etc. However, the higher sintering temperature (>2200K) has hampered the commercialization of thorium dioxide fuel. To overcome the issue, molecular dynamics (MD) simulations is used to study the microstructure evolution of ThO2 nanoparticles during sintering at T=1800K-2200K below melting point. We used two sizes of ThO2 nanoparticles 3.36nm and 4.49nm in different crystal orientations, and the innovative three-dimensional fcc model was adopted to mimic the real sintering process. The effect of sintering temperature, porosity, the angle of particle reorientation, mean square displacement of Th and O in different regimes of ThO2 particle and grain growth were investigated.
By the results, we found that the system densified very well as the particle size is small and as T≧1900K. Here we classify three governing sintering mechanisms: particle reorientation, contact plane adjustment and surface diffusion in different stages. The simulation results would provide useful information on the synthesis of ThO2 nuclear fuel pellet.
[1] T. R. G. Kutty, K. B. Khan, A. Kumar, and H. S. Kamath, "Densification Strain Rate in Sintering of ThO2 and ThO2-0.25%Nb2O5 Pellets," Science of Sintering, vol. 41, pp. 103-115, May-Aug 2009.
[2] R. A. Buckingham, "The classical equation of state of gaseous helium, neon and argon," Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. 168, pp. 264-283, Oct 1938.
[3] H. Margenau, "Van der Waals potential in helium," Physical Review, vol. 56, pp. 1000-1008, Nov 1939.
[4] R. K. Behera and C. S. Deo, "Atomistic models to investigate thorium dioxide (ThO2)," Journal of Physics-Condensed Matter, vol. 24, May 30 2012.
[5] International Atomic Energy Agency., Thorium Fuel Cycle - Potential Benefits and Challenges. Austria: International Atomic Energy Agency, 2005.
[6] P. Martin, D. J. Cooke, and R. Cywinski, "A molecular dynamics study of the thermal properties of thorium oxide," Journal of Applied Physics, vol. 112, Oct 2012.
[7] 鍾啟東(1984),「釷燃料循環」,科學月刊,0172期。
[8] B. T. Wang, H. L. Shi, W. D. Li, and P. Zhang, "First-principles study of ground-state properties and high pressure behavior of ThO2," Journal of Nuclear Materials, vol. 399, pp. 181-188, Apr 30 2010.
[9] M. F. Ashby, "First report on sintering diagrams," Acta Metallurgica, vol. 22, pp. 275-289, 1974.
[10] R. L. Coble, "Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts," Journal of Applied Physics, vol. 32, pp. 793-799, 1961.
[11] R. L. Coble, "Sintering Crystalline Solids .1. Intermediate and Final State Diffusion Models," Journal of Applied Physics, vol. 32, pp. 787-&, 1961.
[12] P. L. Chen and I. W. Chen, "Sintering of fine oxide powders .1. Microstructural evolution," Journal of the American Ceramic Society, vol. 79, pp. 3129-3141, Dec 1996.
[13] P.-L. Chen and I. W. Chen, "Sintering of Fine Oxide Powders: II, Sintering Mechanisms," Journal of the American Ceramic Society, vol. 80, pp. 637-645, 1997.
[14] K. F. Peters, J. B. Cohen, and Y. W. Chung, "Melting of Pb nanocrystals," Physical Review B, vol. 57, pp. 13430-13438, Jun 1998.
[15] Z. R. Dai, S. H. Sun, and Z. L. Wang, "Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals," Nano Letters, vol. 1, pp. 443-447, Aug 2001.
[16] K. E. J. Lehtinen and M. R. Zachariah, "Effect of coalescence energy release on the temporal shape evolution of nanoparticles," Physical Review B, vol. 63, p. 205402, 2001.
[17] V. Yadha and J. J. J. J. Helble, "Modeling the coalescence of heterogenous amorphous particles," Journal of Aerosol Science, vol. 35, pp. 665-681, 2004.
[18] A. Kara and T. S. Rahman, "Vibrational dynamics and thermodynamics of surfaces and nanostructures," Surface Science Reports, vol. 56, pp. 159-187, Jan 2005.
[19] J. H. Shim, B. J. Lee, and Y. W. Cho, "Thermal stability of unsupported gold nanoparticle: a molecular dynamics study," Surface Science, vol. 512, pp. 262-268, Jul 2002.
[20] L. J. Lewis, P. Jensen, and J. L. Barrat, "Melting, freezing, and coalescence of gold nanoclusters," Physical Review B, vol. 56, pp. 2248-2257, Jul 1997.
[21] G. Bilalbegovic, "Assemblies of gold icosahedra," Computational Materials Science, vol. 31, pp. 181-186, 2004.
[22] S. J. Zhao, S. Q. Wang, Z. Q. Yang, and H. Q. Ye, "Coalescence of three silver nanoclusters: a molecular dynamics study," Journal of Physics-Condensed Matter, vol. 13, pp. 8061-8069, Sep 2001.
[23] H. L. Zhu and R. S. Averback, "Sintering of nano-particle powders: Simulations and experiments," Materials and Manufacturing Processes, vol. 11, pp. 905-923, 1996.
[24] Y. Qi, T. Cagin, W. L. Johnson, and W. A. Goddard, "Melting and crystallization in Ni nanoclusters: The mesoscale regime," Journal of Chemical Physics, vol. 115, pp. 385-394, Jul 2001.
[25] F. Ding, A. Rosen, and K. Bolton, "Size dependence of the coalescence and melting of iron clusters: A molecular-dynamics study," Physical Review B, vol. 70, Aug 2004.
[26] T. H. Fang, W. J. Chang, and J. W. Chiu, "Study on coalescent properties of ZnO nanoclusters using molecular dynamics simulation and experiment," Microelectronics Journal, vol. 37, pp. 722-727, Aug 2006.
[27] T. Hawa and M. R. Zachariah, "Coalescence kinetics of unequal sized nanoparticles," Journal of Aerosol Science, vol. 37, pp. 1-15, Jan 2006.
[28] H. Z. Zhang and J. F. Banfield, "Thermodynamic analysis of phase stability of nanocrystalline titania," Journal of Materials Chemistry, vol. 8, pp. 2073-2076, Sep 1998.
[29] V. N. Koparde and P. T. Cummings, "Molecular dynamics simulation of titanium dioxide nanoparticle sintering," Journal of Physical Chemistry B, vol. 109, pp. 24280-24287, Dec 29 2005.
[30] P. K. Naicker, P. T. Cummings, H. Z. Zhang, and J. F. Banfield, "Characterization of titanium dioxide nanoparticles using molecular dynamics simulations," Journal of Physical Chemistry B, vol. 109, pp. 15243-15249, Aug 2005.
[31] D. V. Filyukov, E. N. Brodskaya, E. M. Piotrovskaya, and S. W. de Leeuw, "Molecular-dynamics simulation of nanoclusters of crystal modifications of titanium dioxide," Russian Journal of General Chemistry, vol. 77, pp. 10-16, Jan 2007.
[32] V. N. Koparde and P. T. Cummings, "Phase transformations during sintering of titania nanoparticles," Acs Nano, vol. 2, pp. 1620-1624, Aug 2008.
[33] D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, "Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r(-1) summation," Journal of Chemical Physics, vol. 110, pp. 8254-8282, May 1999.
[34] D. J. Adams, "On the use of the ewald summation in computer-simulation," Journal of Chemical Physics, vol. 78, pp. 2585-2590, 1983.
[35] P. Demontis, S. Spanu, and G. B. Suffritti, "Application of the Wolf method for the evaluation of Coulombic interactions to complex condensed matter systems: Aluminosilicates and water," The Journal of Chemical Physics, vol. 114, pp. 7980-7988, 2001.
[36] L. Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules," Physical Review, vol. 159, p. 98, 1967.
[37] L. Verlet, "Computer "Experiments" on Classical Fluids. II. Equilibrium Correlation Functions," Physical Review, vol. 165, p. 201, 1968.
[38] R. P. Feynman, R. B. Leighton, and M. L. Sands, The Feynman lectures on physics. Reading, Mass.,: Addison-Wesley Pub. Co., 1963.
[39] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of Chemical Physics, vol. 76, pp. 637-649, 1982.
[40] S. Nose, "A MOLECULAR-DYNAMICS METHOD FOR SIMULATIONS IN THE CANONICAL ENSEMBLE," Molecular Physics, vol. 52, pp. 255-268, 1984 1984.
[41] S. Nose, "A UNIFIED FORMULATION OF THE CONSTANT TEMPERATURE MOLECULAR-DYNAMICS METHODS," Journal of Chemical Physics, vol. 81, pp. 511-519, 1984 1984.
[42] C. S. Nichols, C. M. Mansuri, S. J. Townsend, and D. A. Smith, "Insitu Studies of Grain-Growth in Thin Metal-Films," Acta Metallurgica Et Materialia, vol. 41, pp. 1861-1868, Jun 1993.
[43] W. Koch and S. K. Friedlander, "The Effect of Particle Coalescence on the Surface-Area of a Coagulating Aerosol," Journal of Colloid and Interface Science, vol. 140, pp. 419-427, Dec 1990.
[44] P. X. Song and D. S. Wen, "Molecular dynamics simulation of the sintering of metallic nanoparticles," Journal of Nanoparticle Research, vol. 12, pp. 823-829, Mar 2010.
[45] B. Cheng and A. H. W. Ngan, "The sintering and densification behaviour of many copper nanoparticles: A molecular dynamics study," Computational Materials Science, vol. 74, pp. 1-11, Jun 2013.
[46] J. D. Jackson, "Classical Electrodynamics," 1975.
[47] A. Stukowski, "Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool," Modelling and Simulation in Materials Science and Engineering, vol. 18, Jan 2010.
[48] L. F. Ding, R. L. Davidchack, and J. Z. Pan, "A molecular dynamics study of sintering between nanoparticles," Computational Materials Science, vol. 45, pp. 247-256, Apr 2009.
[49] S. Ogata, H. Iyetomi, K. Tsuruta, F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, "Variable-charge interatomic potentials for molecular-dynamics simulations of TiO2," Journal of Applied Physics, vol. 86, pp. 3036-3041, Sep 15 1999.
[50] R. Theissmann, M. Fendrich, R. Zinetullin, G. Guenther, G. Schierning, and D. E. Wolf, "Crystallographic reorientation and nanoparticle coalescence," Physical Review B, vol. 78, Nov 2008.
[51] L. F. Cao, G. Y. Xu, D. Xie, M. X. Guo, L. Luo, Z. Li, and M. P. Wang, "Thermal stability of Fe, Co, Ni metal nanoparticles," Physica Status Solidi B-Basic Solid State Physics, vol. 243, pp. 2745-2755, Oct 2006.